Some Cases of Unrecognized Transmission of Scientific Knowledge: From Antiquity to Gabrio Piola’s Peridynamics and Generalized Continuum Theories

  • Francesco dell’IsolaEmail author
  • Alessandro Della Corte
  • Raffaele Esposito
  • Lucio Russo
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 42)


The aim of this paper is to show some typical mechanisms in the transmission of scientific knowledge through the study of some examples. We will start by considering some ancient examples concerning Democritus, Heron, Galileo and the history of the theory of tides. Then we will mainly focus on the works of the Italian scientist Gabrio Piola (1794–1850). In particular: 1. we show clear similarities between Noll’s postulation of mechanics and the ‘ancient’ presentation by Piola of the ideas needed to found Analytical Continuum Mechanics; 2. we prove that non-local and higher gradient continuum mechanics were conceived (and clearly formulated) already in Piola’s works; 3. we explain the reasons of the unfortunate circumstances which caused the (temporary) erasure of the memory of many among Piola’s contributions to mechanical sciences. Moreover, we discuss how the theory which has recently been called peridynamics, i.e. a mechanical theory which assumes that the force applied on a material particle of a continuum depends on the deformation state of a neighbourhood of the particle, was first formulated in Piola’s works. In this way we argue that in the passage from one a cultural tradition to another the content of scientific texts may often be lost, and it is possible to find more recent sources which are scientifically more primitive than some more ancient ones.


Transmission of scientific knowledge Principle of virtual work Generalized continua Peridynamics 


  1. Alibert JJ, Seppecher P, dell’Isola F, (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 8:51–73Google Scholar
  2. Andreaus U, Giorgio I, Lekszycki T (2014a) A 2-d continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 94(12):978–1000Google Scholar
  3. Andreaus U, Giorgio I, Madeo A (2014b) Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Zeitschrift für angewandte Mathematik und Physik 66(1):209–237Google Scholar
  4. Askari E, Bobaru F, Lehoucq RB, Parks ML, Silling SA, Weckner O (2008) Peridynamics for multiscale materials modeling. J Phys: Conf Ser 125:012078Google Scholar
  5. Atai AA, Steigmann DJ (1997) On the nonlinear mechanics of discrete networks. Arch Appl Mech 67:303–319Google Scholar
  6. Auffray N, dell’Isola F, Eremeyev V, Madeo A, Rosi G, (2015) Analytical continuum mechanics a la Hamilton-Piola least action principle for second gradinet continua and capillary fluids. Math Mech Solids 20(4):375–417Google Scholar
  7. Baldini U (1992) Legem impone subactis. Studi su filosofia e scienza dei Gesuiti in Italia. Bulzoni Editore, Rome, pp 1540–1632Google Scholar
  8. Berdichevsky V (2009) Variational principles of continuum mechanics, vols I–II. Springer, BerlinGoogle Scholar
  9. Boutin C, Hans S (2003) Homogenisation of periodic discrete medium: application to dynamics of framed structures. Comput Geotech 30:303–320CrossRefGoogle Scholar
  10. Boutin C, Hans S, Chesnais C (2011) Generalized beams and continua. Dynamics of reticulated structures. In: Altenbach H, Erofeev V, Maugin G (eds) Mechanics of generalized continua. Springer, Heidelberg, pp 131–141Google Scholar
  11. Capecchi D, Ruta G (2015) Strength of materials and theory of elasticity in 19th Century Italy. A brief account of the history of mechanics of solids and structures, advanced structured materials, vol 52. Springer, BerlinGoogle Scholar
  12. Capecchi D, Ruta GC (2007) Piola’s contribution to continuum mechanics. Arch Hist Exact Sci 61(4):303–342MathSciNetzbMATHCrossRefGoogle Scholar
  13. Carcaterra A (2005) Ensemble energy average and energy flow relationships for nonstationary vibrating systems. J Sound Vib 288:751–790CrossRefGoogle Scholar
  14. Carcaterra A, Akay A (2007) Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. J Acoust Soc Am 12:1971–1982CrossRefGoogle Scholar
  15. Carcaterra A, Akay A (2011) Dissipation in a finite-size bath. Phys Rev E 84(011):121Google Scholar
  16. Carcaterra A, Akay A, Ko IM (2006) Near-irreversibility in a conservative linear structure with singularity points in its modal density. J Acoust Soc Am 119:2141–2149CrossRefGoogle Scholar
  17. Carugo A, Crombie AC (1983) The jesuits and galileo’s ideas of science of nature. Annali dell’Istituto e Museo di storia della scienza di Firenze pp 63–62Google Scholar
  18. Cazzani A, Malagú M, Turco E (2014a) Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mechanics and thermodynamics, pp 1–18Google Scholar
  19. Cazzani A, Malagú M, Turco E (2014b) Isogeometric analysis of plane-curved beams. Math Mech Solids. doi: 10.1177/1081286514531265 zbMATHGoogle Scholar
  20. Chesnais C, Boutin C, Hans S (2012) Effects of the local resonance on the wave propagation in periodic frame structures: generalized newtonian mechanics. J Acoust Soc Am 132:2873–2886CrossRefGoogle Scholar
  21. Clagett M (1959) The science of mechanics in the middle ages. The University of Wisconsin Press, MadisonzbMATHGoogle Scholar
  22. Contrafatto L, Cuomo M (2002) A new thermodynamically consistent continuum model for hardening plasticity coupled with damage. Int J Solids Struct 39:6241–6271zbMATHCrossRefGoogle Scholar
  23. Contrafatto L, Cuomo M (2005) A globally convergent numerical algorithm for damaging elasto-plasticity based on the multiplier method. Int J Numer Methods Eng 63:1089–1125MathSciNetzbMATHCrossRefGoogle Scholar
  24. Contrafatto L, Cuomo M (2006) A framework of elastic-plastic damaging model for concrete under multiaxial stress states. Int J Plast 22:2272–2300zbMATHCrossRefGoogle Scholar
  25. Cosserat E, Cosserat F (1909) Théorie des Corps deformables. A. Hermann et Fils, PariszbMATHGoogle Scholar
  26. Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49(1):1–23MathSciNetzbMATHCrossRefGoogle Scholar
  27. Cuomo M, Contrafatto L (2000) Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation. Int J Solids Struct 37:3935–3964zbMATHCrossRefGoogle Scholar
  28. Cuomo M, Ventura G (1998) Complementary energy approach to contact problems based on consistent augmented Lagrangian regularization. Math Comput Model 28:185–204zbMATHCrossRefGoogle Scholar
  29. Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 80:173–188MathSciNetCrossRefGoogle Scholar
  30. Daher N, Maugin GA (1986) The method of virtual power in continuum mechanics. Application to media presenting singular surfaces and interfaces. Acta Mech 60:217–240MathSciNetzbMATHCrossRefGoogle Scholar
  31. d’Alembert JBLR (1758) Traité de l’équilibre et du mouvement des fluides: pour servir de suite au Traité de dynamique. Paris, chez David, l’aînéGoogle Scholar
  32. dell’Isola F, Placidi L (2011) Variational principles are a powerful tool also for formulating field theories. In: dell’Isola F, Gavrilyuk S (eds) Variational models and methods in solid and fluid mechanics, CISM course and lectures, vol 535. Springer, Vienna, pp 1–16Google Scholar
  33. dell’Isola F, Seppecher P, (1995) The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power. Comptes rendus de l’Académie des Sciences Série IIb 321:303–308Google Scholar
  34. dell’Isola F, Seppecher P, (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33–52Google Scholar
  35. dell’Isola F, Gouin H, Seppecher P, (1995) Radius and surface tension of microscopic bubbles by second gradient theory. Comptes rendus de l’Académie des Sciences Série IIb 320:211–216Google Scholar
  36. dell’Isola F, Guarascio M, Hutter K, (2000) A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch Appl Mech 70:323–337Google Scholar
  37. dell’Isola F, Sciarra G, Vidoli S, (2009) Generalized Hooke’s law for isotropic second gradient materials. Proc R Soc Lond Ser A: Math Phys Eng Sci 465:2177–2196Google Scholar
  38. dell’Isola F, Seppecher P, Madeo A, (2012) How contact interactions may depend on the shape of Cauchy cuts in \(N\)th gradient continua: approach à la D’Alembert. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 63:1119–1141Google Scholar
  39. dell’Isola F, Maier G, Perego U, Andreaus U, Esposito R, Forest S, Piola G, (ed) (2015) The complete works of Gabrio Piola: commented english translation, advanced structured materials, vol 38. Springer, HeidelbergGoogle Scholar
  40. dell’Isola F, Andreaus U, Placidi U, (2016) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928Google Scholar
  41. Demmie PN, Silling SA (2007) An approach to modeling extreme loading of structures using peridynamics. J Mech Mater Struct 2(10):1921–1945CrossRefGoogle Scholar
  42. Di Paola M, Failla G, Zingales M (2010a) The mechanically-based approach to 3D non-local linear elasticity theory: long-range central interactions. Int J Solids Struct 47(18):2347–2358zbMATHCrossRefGoogle Scholar
  43. Di Paola M, Pirrotta A, Zingales M (2010b) Mechanically-based approach to non-local elasticity: variational principles. Int J Solids Struct 47(5):539–548zbMATHCrossRefGoogle Scholar
  44. Drake S (2003) Galileo at work: his scientific biography. Courier Dover Publications, New YorkGoogle Scholar
  45. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math Models Methods Appl Sci 23(3):493–540MathSciNetzbMATHCrossRefGoogle Scholar
  46. Emmrich E, Lehoucq RB, Puhst D (2013) Peridynamics: nonlocal continuum theory. Lecture notes in computational science and engineering, vol 89. Springer, Berlin, pp 45–65Google Scholar
  47. Epstein M, Segev R (1980) Differentiable manifolds and the principle of virtual work in continuum mechanics. J Math Phys 21(5):1243–1245MathSciNetzbMATHCrossRefGoogle Scholar
  48. Eremeyev VA, Altenbach H (2014) Equilibrium of a second-gradient fluid and an elastic solid with surface stresses. Meccanica 49(11):2635–2643MathSciNetzbMATHCrossRefGoogle Scholar
  49. Eremeyev VA, Lebedev LP (2013) Existence of weak solutions in elasticity. Math Mech Solids 18:204–217MathSciNetCrossRefGoogle Scholar
  50. Eringen AC (1999) microcontinuum field theories, vol I. Foundations and solids, Springer, New YorkzbMATHCrossRefGoogle Scholar
  51. Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkzbMATHGoogle Scholar
  52. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248MathSciNetzbMATHCrossRefGoogle Scholar
  53. Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135:117–131CrossRefGoogle Scholar
  54. Forest S, Cordero NM, Busso EP (2011) First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Comput Mater Sci 50:1299–1304CrossRefGoogle Scholar
  55. Fraser CG (1983) J. L. Lagrange’s early contributions to the principles and methods of mechanics. Arch Hist Exact Sci 28(3):197–241Google Scholar
  56. Galilei G (1890–1909, reprinted 1964–1966) Le opere, Ed Naz, vol 20. G Barbera, FlorenceGoogle Scholar
  57. Gatignol R, Seppecher P (1986) Modelisation of fluid-fluid interfaces with material properties. Journal de Mécanique Théorique et Appliquée 225–247Google Scholar
  58. Germain P (1973a) La méthode des puissances virtuelles en mécanique des milieux continus. Premiére partie. Thèorie du second gradient. Journal de Mécanique 12:235–274MathSciNetzbMATHGoogle Scholar
  59. Germain P (1973b) The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J Appl Math 25(3):556–575MathSciNetzbMATHCrossRefGoogle Scholar
  60. Green AE, Rivlin RS (1964a) Multipolar continuum mechanics. Arch Ration Mech Anal 17:113–147MathSciNetzbMATHGoogle Scholar
  61. Green AE, Rivlin RS (1964b) On Cauchy’s equations of motion. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 15:290–292MathSciNetzbMATHCrossRefGoogle Scholar
  62. Green AE, Rivlin RS (1964c) Simple force and stress multipoles. Arch Ration Mech Anal 16:325–353MathSciNetzbMATHGoogle Scholar
  63. Green AE, Rivlin RS (1965) Multipolar continuum mechanics: functional theory. Proc R Soc Lond Ser A Math Phys Eng Sci 284:303–324MathSciNetCrossRefGoogle Scholar
  64. Haseganu EM, Steigmann DJ (1996) Equilibrium analysis of finitely deformed elastic networks. Comput Mech 17:359–373zbMATHCrossRefGoogle Scholar
  65. Hellinger E (1913) Die allgemeinen ansätze der mechanik der kontinua. In: und C Müller FK (ed) Encyklopädie der mathematischen Wissenschaften, vol IV-4, No. 5, Teubner, Leipzig, pp 601–694Google Scholar
  66. Heron (1899, 1900) Opera quae supersunt omnia, (reprinted by B.G. Teubner, Stuttgart, 1976), vol I (ed. W. Schmidt) and II (ed. L. Nix and W. Schmidt). B.G. Teubner, LeipzigGoogle Scholar
  67. Heron, (1988) Les Mécaniques ou l’èlèvateur des corps lourds. Les Belles Lettres. Commented by A.G, DrachmannGoogle Scholar
  68. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, MineolaGoogle Scholar
  69. Klein MJ (1981) Not by discoveries alone: the centennial of Paul Ehrenfest. Physica 106A:3–14CrossRefGoogle Scholar
  70. Lagrange JL (1788) Mécanique Analytique. Editions Jaques Gabay, SceauxGoogle Scholar
  71. Lebedev LP, Cloud MJ, Eremeyev VA (2010) Tensor analysis with applications in mechanics. World Scientific, New JerseyzbMATHCrossRefGoogle Scholar
  72. Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56(4):1566–1577MathSciNetzbMATHCrossRefGoogle Scholar
  73. Levi-Civita T (1927) The Absolute Differential Calculus (Calculus of Tensors) (edited by E. Persico and English translation by M. Long). Dover EditionsGoogle Scholar
  74. Madeo A, Gavrilyuk S (2010) Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface. Eur J Mech-A/Solids 29(5):897–910MathSciNetCrossRefGoogle Scholar
  75. Madeo A, Lekszycki T, dell’Isola F, (2011) A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus Mécanique 339(10):625–640Google Scholar
  76. Madeo A, George D, Lekszycki T, Nierenberger M, Rémond Y (2012) A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique 340(8):575–589CrossRefGoogle Scholar
  77. Maugin GA (2011) The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Contin Mech Thermodyn 25:127–146MathSciNetCrossRefGoogle Scholar
  78. McBride AT, Javili A, Steinmann P, Bargmann S (2011) Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J Mech Phys Solids 59:2116–2133MathSciNetzbMATHCrossRefGoogle Scholar
  79. McBride AT, Mergheim J, Javili A, Steinmann P, Bargmann S (2012) Micro-to-macro transitions for heterogeneous material layers accounting for in-plane stretch. J Mech Phys Solids 60:1221–1239MathSciNetCrossRefGoogle Scholar
  80. Milton GW, Seppecher P, Bouchitté G (2009) Minimization variational principles for acoustics, elastodynamics and electromagnetism in lossy inhomogeneous bodies at fixed frequency. Proc R Soc A: Math Phys Eng Sci 465(2102):367–396MathSciNetzbMATHCrossRefGoogle Scholar
  81. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78MathSciNetzbMATHGoogle Scholar
  82. Mindlin RD (1965) Second gradient of strain and surface tension in linear elasticity. Int J Solids Struct 1:417–438CrossRefGoogle Scholar
  83. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124zbMATHCrossRefGoogle Scholar
  84. Misra A, Chang CS (1993) Effective elastic moduli of heterogeneous granular solids. Int J Solids Struct 30:2547–2566zbMATHCrossRefGoogle Scholar
  85. Misra A, Singh V (2013) Micromechanical model for viscoelastic-materials undergoing damage. Contin Mech Thermody 25:1–16MathSciNetCrossRefGoogle Scholar
  86. Misra A, Yang Y (2010) Micromechanical model for cohesive materials based upon pseudo-granular structure. Int J Solids Struct 47(21):2970–2981zbMATHCrossRefGoogle Scholar
  87. Müller CH, Timpe A, Tedone O (1907) Die grundgleichungen der mathematischen elastizitätstheorie - allgemeine theoreme der mathematischen elastizitätslehre (integrationstheorie). In: und C Müller FK (ed) Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, vol IV-1, Teubner, LeipzigGoogle Scholar
  88. Nadler B, Papadopoulos P, Steigmann DJ (2006) Multiscale constitutive modeling and numerical simulation of fabric material. Int J Solids Struct 43(2):206–221zbMATHCrossRefGoogle Scholar
  89. Neff P (2002) On Korn’s first inequality with non-constant coefficients. R Soc Edinb Proc A 132(1):221–243MathSciNetzbMATHCrossRefGoogle Scholar
  90. Neff P (2004) A geometrically exact cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. part i: Formal dimensional reduction for elastic plates and existence of minimizers for positive cosserat couple modulus. Contin Mech Thermodyn 16(6):577–628Google Scholar
  91. Neff P (2006a) Existence of minimizers for a finite-strain micromorphic elastic solid. R Soc Edinb Proc A 136(5):997–1012MathSciNetzbMATHCrossRefGoogle Scholar
  92. Neff P (2006b) A finite-strain elastic-plastic cosserat theory for polycrystals with grain rotations. Int J Eng Sci 44(8–9):574–594MathSciNetzbMATHCrossRefGoogle Scholar
  93. Neff P (2006c) The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 86(11):892–912MathSciNetzbMATHCrossRefGoogle Scholar
  94. Neff P (2007) A geometrically exact planar Cosserat shell-model with microstructure: existence of minimizers for zero Cosserat couple modulus. Math Models Methods Appl Sci 17(3):363–392MathSciNetzbMATHCrossRefGoogle Scholar
  95. Neff P, Chelmiński K (2007) A geometrically exact Cosserat shell model for defective elastic crystals. Justification via \(\gamma \)-convergence. Interfaces Free Bound 9(4):455–492Google Scholar
  96. Neff P, Jeong J (2009) A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 89(2):107–122MathSciNetzbMATHCrossRefGoogle Scholar
  97. Paipetis SA, Ceccarelli M (eds) (2010) The Genius of Archimedes – 23 Centuries of Influence on Mathematics, Science and Engineering. Proceedings of an international conference held at Syracuse, Italy, 8–10 June 2010. Springer, BerlinGoogle Scholar
  98. Parks M, Lehoucq R, Plimpton S, Silling S (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179:777–783zbMATHCrossRefGoogle Scholar
  99. Piccardo G, Ranzi G, Luongo A (2014) A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes. Math Mech Solids 19(8):900–924MathSciNetzbMATHCrossRefGoogle Scholar
  100. Piola G, (1825) Sull’applicazione de’ principj della meccanica analitica del Lagrange ai principali problemi. Memoria di Gabrio Piola presentata al concorso del premio e coronata dall’I.R. Istituto di Scienze, ecc. nella solennita del giorno 4 ottobre, (1824) Imp. Regia stamperia, ModenaGoogle Scholar
  101. Piola G (1833) La meccanica de’ corpi naturalmente estesi: trattata col calcolo delle variazioni. Giusti, MilanoGoogle Scholar
  102. Piola G (1835) Nuova analisi per tutte le questioni della meccanica molecolare. Tipografia camerale, ModenaGoogle Scholar
  103. Piola G (1845–1846) Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione. Tipi del R.D. Camera, ModenaGoogle Scholar
  104. Piola G (1856) Di un principio controverso della Meccanica analitica di Lagrange e delle molteplici sue applicazioni (memoria postuma pubblicata per cura del prof. Bernardoni, Milano, Francesco Brioschi)Google Scholar
  105. Placidi L (2015) A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin Mech Thermodyn 17(4):623–638MathSciNetCrossRefGoogle Scholar
  106. Placidi L, Rosi G, Giorgio I, Madeo A (2014) Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math Mech Solids 94(10):862–877MathSciNetzbMATHGoogle Scholar
  107. Polizzotto C (2001) Nonlocal elasticity and related variational principles. Int J Solids Struct 38(42–43):7359–7380MathSciNetzbMATHCrossRefGoogle Scholar
  108. Ricci-Curbastro G, Levi-Civita T (1900) Méthodes de calcul différentiel absolu et leurs applications. Mathematische Annalen 54(1–2):125–201MathSciNetzbMATHCrossRefGoogle Scholar
  109. Rinaldi A, Lai YC (2007) Statistical damage theory of 2D lattices: Energetics and physical foundations of damage parameter. Int J Plast 23(10–11):1796–1825 (in honor of Professor Dusan Krajcinovic)zbMATHCrossRefGoogle Scholar
  110. Rinaldi A, Krajcinovic D, Peralta P, Lai YC (2008) Lattice models of polycrystalline microstructures: a quantitative approach. Mech Mater 40(1–2):17–36CrossRefGoogle Scholar
  111. Russo L (2003) Flussi e Riflussi. Feltrinelli, MilanoGoogle Scholar
  112. Russo L (2004) The Forgotten revolution. How Science Was Born in 300 BC and Why it Had to Be Reborn. Springer, BerlinGoogle Scholar
  113. Russo L (2013) L’America dimenticata. Mondadori Università, I rapporti tra le civiltà e un errore di TolomeoGoogle Scholar
  114. Scerrato D, Giorgio I, Madeo A, Limam A, Darve F (2014) A simple non-linear model for internal friction in modified concrete. Int J Eng Sci 80:136–152 (special issue on Nonlinear and Nonlocal Problems. In occasion of 70th birthday of Prof Leonid Zubov)Google Scholar
  115. Schröder J, Neff P, Balzani D (2005) A variational approach for materially stable anisotropic hyperelasticity. Int J Solids Struct 42(15):4352–4371MathSciNetzbMATHCrossRefGoogle Scholar
  116. Sedov LI (1968) Variational methods of constructing models of continuous media. Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids. Springer, Vienna, pp 346–358Google Scholar
  117. Sedov LI (1972) Models of continuous media with internal degrees of freedom. J Appl Math Mech 32:803–819zbMATHCrossRefGoogle Scholar
  118. Segev R (1986) Forces and the existence of stresses in invariant continuum mechanics. J Math Phys 27(1):163–170MathSciNetzbMATHCrossRefGoogle Scholar
  119. Segev R (2000) The geometry of cauchy’s fluxes. Arch Ration Mech Anal 154(3):183–198MathSciNetzbMATHCrossRefGoogle Scholar
  120. Seleson P, Beneddine S, Prudhomme S (2013) A force-based coupling scheme for peridynamics and classical elasticity. Comput Mater Sci 66:34–49CrossRefGoogle Scholar
  121. Seppecher P (1987) Etude d’une modelisation des zones capillaires fluides: Interfaces et lignes de contact. Université Paris VI, Paris, ThéseGoogle Scholar
  122. Seppecher P (1988) Thermodynamique des zones capillaires. Annales de Physique 13:13–22Google Scholar
  123. Seppecher P (1989) Etude des conditions aux limites en théorie du second gradient: cas de la capillarité. Comptes rendus de l’Académie des Sciences 309:497–502MathSciNetzbMATHGoogle Scholar
  124. Seppecher P (1993) Equilibrium of a Cahn and Hilliard fluid on a wall: Influence of the wetting properties of the fluid upon the stability of a thin liquid film. Eur J Mech B/Fluids 12:69–84MathSciNetzbMATHGoogle Scholar
  125. Seppecher P (1996a) Les fluides de cahn-hilliard. Université du Sud Toulon Var, Mémoire d’habilitation à diriger des rechercheszbMATHGoogle Scholar
  126. Seppecher P (1996b) A numerical study of a moving contact line in Cahn-Hilliard theory. Int J Eng Sci 34:977–992zbMATHCrossRefGoogle Scholar
  127. Seppecher P (2001) Line tension effect upon static wetting. Oil Gas Sci Technol Rev IFP 56:77–81CrossRefGoogle Scholar
  128. Seppecher P (2002) Second-gradient theory: application to Cahn-Hilliard fluids. In: Maugin GA, Drouot R, Sidoroff F (eds) Continuum thermomechanics, solid mechanics and its applications, vol 76. Springer, Netherlands, pp 379–388CrossRefGoogle Scholar
  129. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNetzbMATHCrossRefGoogle Scholar
  130. Silling S, Lehoucq R (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1):13–37MathSciNetzbMATHCrossRefGoogle Scholar
  131. Silling S, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184MathSciNetzbMATHCrossRefGoogle Scholar
  132. Soubestre J, Boutin C (2012) Non-local dynamic behavior of linear fiber reinforced materials. Mech Mater 55:16–32CrossRefGoogle Scholar
  133. Steeb H, Diebels S (2004) Modeling thin films applying an extended continuum theory based on a scalar-valued order parameter.: Part i: isothermal case. Int J Solids Struct 41(18–19):5071–5085zbMATHCrossRefGoogle Scholar
  134. Steigmann D (1996) The variational structure of a nonlinear theory for spatial lattices. Meccanica 31(4):441–455MathSciNetzbMATHCrossRefGoogle Scholar
  135. Steigmann D, Faulkner M (1993) Variational theory for spatial rods. J Elast 33(1):1–26MathSciNetzbMATHCrossRefGoogle Scholar
  136. Steigmann DJ (1992) Equilibrium of prestressed networks. IMA J Appl Math 48(2):195–215MathSciNetzbMATHCrossRefGoogle Scholar
  137. Steigmann DJ (2002) Invariants of the stretch tensors and their application to finite elasticity theory. Math Mech Solids 7(4):393–404MathSciNetzbMATHCrossRefGoogle Scholar
  138. Steigmann DJ (2003) Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math Mech Solids 8(5):497–506MathSciNetzbMATHCrossRefGoogle Scholar
  139. Steigmann DJ (2009) A concise derivation of membrane theory from three-dimensional nonlinear elasticity. J Elast 97(1):97–101MathSciNetzbMATHCrossRefGoogle Scholar
  140. Steigmann DJ, Ogden RW (1997) Plane deformations of elastic solids with intrinsic boundary elasticity. Proc R SocLond A: Math Phys Eng Sci 453(1959):853–877MathSciNetzbMATHCrossRefGoogle Scholar
  141. Steigmann DJ, Ogden RW (1999) Elastic surface–substrate interactions. Proc R Soc Lond A: Math Phys Eng Sci 455(1982):437–474MathSciNetzbMATHCrossRefGoogle Scholar
  142. Steinmann P (2008) On boundary potential energies in deformational and configurational mechanics. J Mech Phys Solids 56(3):772–800MathSciNetzbMATHCrossRefGoogle Scholar
  143. Steinmann P, Elizondo A, Sunyk R (2007) Studies of validity of the Cauchy-Born rule by direct comparison of continuum and atomistic modelling. Model Simul Mater Sci Eng 15(1):S271–S281CrossRefGoogle Scholar
  144. Sunyk R, Steinmann P (2003) On higher gradients in continuum-atomistic modelling. Int J Solids Struct 40(24):6877–6896zbMATHCrossRefGoogle Scholar
  145. Thomas I (1939) Greek Mathematical Works: Vol. I Thales to Euclid. No. 335 in Loeb Classical Library, LoebGoogle Scholar
  146. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414MathSciNetzbMATHCrossRefGoogle Scholar
  147. Toupin RA (1964) Theories of elasticity with couple-stress. Arch Ration Mech Anal 17(2):85–112MathSciNetzbMATHGoogle Scholar
  148. Truesdell C (1968) Essays in the history of mechanics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  149. Truesdell C (1977) A first course in rational continuum mechanics. Academic Press, New YorkzbMATHGoogle Scholar
  150. Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  151. Truesdell C, Toupin R (1960) Classical field theories of mechanics. In: Flügge S (ed) Handbuch der Physik, vol III/1. Springer, BerlinGoogle Scholar
  152. Vailati G (1987) Scritti, a cura di M. Quaranta, Bologna, Forni, pp 3–17Google Scholar
  153. de Vaux C (1893) Les Mécaniques ou l’Élévateur de Heron d’Alexandrie, sur la version arabe de Qostā Ibn Lūqā. Journal asiatique, neuvième série 1, 2:286–472, 152–269, 420–514Google Scholar
  154. Voicu A (1999) La continuità di varie questioni meccaniche da Stratone a Newton. Master degree thesis in mathematics (advisor: Lucio Russo), University of Rome Tor VergataGoogle Scholar
  155. Wallis J (1666) An essay of Dr. John Wallis, exhibiting his hypothesis about the flux and reflux of the sea, taken from the consideration of the common center of gravity of the earth and moon; Together with an appendix of the same, containing an answer to some objections, made by several persons against that hypothesis. Philos Trans Roy Soc London 1(1–22):263–281Google Scholar
  156. Winter TN (2007) The Mechanical Problems in the Corpus of Aristotle, digitalCommons@University of Nebraska - LincolnGoogle Scholar
  157. Yang Y, Misra A (2010) Higher-order stress-strain theory for damage modeling implemented in an element-free galerkin formulation. Comput Model Eng Sci 64:1–26MathSciNetzbMATHGoogle Scholar
  158. Yang Y, Ching WY, Misra A (2011) Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J Nanomechanics Micromechanics 1(2):60–71CrossRefGoogle Scholar
  159. Yeremeyev VA, Zubov LM (1999) The theory of elastic and viscoelastic micropolar liquids. J Appl Math Mech 63(5):755–767MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francesco dell’Isola
    • 1
    • 2
    Email author
  • Alessandro Della Corte
    • 3
  • Raffaele Esposito
    • 2
  • Lucio Russo
    • 4
  1. 1.Department of Structural and Gentechnical EngineeringUniversity La Sapienza of RomeRomeItaly
  2. 2.International Research Center on Mathematics and Mechanics of Complex Systems (M&MoCS)University of L’AquilaL’AquilaItaly
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity La Sapienza of RomeRomeItaly
  4. 4.Department of MathematicsUniversity Tor Vergata of RomeRomeItaly

Personalised recommendations