Skip to main content

On Strain Rate Tensors and Constitutive Equations of Inelastic Micropolar Materials

  • Chapter
  • First Online:
Book cover Generalized Continua as Models for Classical and Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 42))

  • 934 Accesses

Abstract

Following Altenbach and Eremeyev (Int J Plast 63:3–17, 2014) we introduce a new family of strain rate tensors for micropolar materials. With the help of introduced strain rates we discuss the possible forms of constitutive equations of the nonlinear inelastic micropolar continuum, that is micropolar viscous and viscoelastic fluids and solids, hypo-elastic and viscoelastoplastic materials. Considering the fact that some of strain rates are not true tensors but pseudotensors we obtain some constitutive restrictions following from the material frame indifference principle. Using the theory of tensorial invariants we present the general form of constitutive equations of some types of inelastic isotropic micropolar materials including several new constitutive equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aero EL, Bulygin AN, Kuvshinskii EV (1965) Asymmetric hydromechanics. J Appl Math Mech 29(2):333–346

    Article  MATH  Google Scholar 

  • Altenbach H, Eremeyev VA (2014) Strain rate tensors and constitutive equations of inelastic micropolar materials. Int J Plast 63:3–17

    Article  Google Scholar 

  • Bruhns OT (2014) The Prandtl-Reuss equations revisited. ZAMM 94(3):187–202

    Article  MathSciNet  MATH  Google Scholar 

  • de Borst R (1993) A generalization of \(J_2\)-flow theory for polar continua. Comput Methods Appl Mech Eng 103(3):347–362

    Article  MathSciNet  MATH  Google Scholar 

  • Eremeyev VA, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. J Solids Struct 49(14):1993–2005

    Article  Google Scholar 

  • Eremeyev VA, Pietraszkiewicz W (2016) Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math Mech Solids 21(2):210–221

    Article  MathSciNet  MATH  Google Scholar 

  • Eremeyev VA, Lebedev LP, Altenbach H (2013) Foundations of micropolar mechanics. Springer-briefs in applied sciences and technologies. Springer, Heidelberg

    Google Scholar 

  • Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16(1):1–18

    MathSciNet  Google Scholar 

  • Eringen AC (1999) Microcontinuum field theory. I. Foundations and solids. Springer, New York

    Book  MATH  Google Scholar 

  • Eringen AC (2001) Microcontinuum field theory. II. Fluent media. Springer, New York

    MATH  Google Scholar 

  • Eringen AC, Kafadar CB (1976) Polar field theories. In: Eringen AC (ed) Continuum physics, vol IV. Academic Press, New York, pp 1–75

    Google Scholar 

  • Grammenoudis P, Tsakmakis C (2007) Micropolar plasticity theories and their classical limits. Part I: resulting model. Acta Mech 189(3–4):151–175

    Article  MATH  Google Scholar 

  • Grammenoudis P, Tsakmakis C (2009) Isotropic hardening in micropolar plasticity. Arch Appl Mech 79(4):323–334

    Article  MATH  Google Scholar 

  • Lebedev LP, Cloud MJ, Eremeyev VA (2010) Tensor analysis with applications in mechanics. World Scientific, New Jersey

    Book  MATH  Google Scholar 

  • Lippmann H (1969) Eine Cosserat-Theorie des plastischen Fließens. Acta Mech 8(3–4):93–113

    MATH  Google Scholar 

  • Łukaszewicz G (1999) Micropolar fluids: theory and applications. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Lurie S, Belov P, Tuchkova N (2005) The application of the multiscale models for description of the dispersed composites. Compos Part A: Appl Sci Manuf 36(2):145–152

    Article  Google Scholar 

  • Nowacki W (1986) Theory of asymmetric elasticity. Pergamon-Press, Oxford

    MATH  Google Scholar 

  • Pau A, Trovalusci P (2012) Block masonry as equivalent micropolar continua: the role of relative rotations. Acta Mech 223(7):1455–1471

    Article  MATH  Google Scholar 

  • Pietraszkiewicz W, Eremeyev VA (2009a) On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 46(3–4):774–787

    Article  MathSciNet  MATH  Google Scholar 

  • Pietraszkiewicz W, Eremeyev VA (2009b) On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int J Solids Struct 46(11–12):2477–2480

    Article  MathSciNet  MATH  Google Scholar 

  • Ramezani S, Naghdabadi R (2007) Energy pairs in the micropolar continuum. Int J Solids Struct 44(14–15):4810–4818

    Article  MATH  Google Scholar 

  • Ramezani S, Naghdabadi R (2010) Micropolar hypo-elasticity. Arch Appl Mech 80(12):1449–1461

    Article  MATH  Google Scholar 

  • Ramezani S, Naghdabadi R, Sohrabpour S (2008) Non-linear finite element implementation of micropolar hypo-elastic materials. Comput Methods Appl Mech Eng 197(49–50):4149–4159

    Article  MATH  Google Scholar 

  • Ramezani S, Naghdabadi R, Sohrabpour S (2009) Constitutive equations for micropolar hyper-elastic materials. Int J Solids Struct 46(14–15):2765–2773

    Article  MATH  Google Scholar 

  • Steinmann P (1994) A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int J Solids Struct 31(8):1063–1084

    Article  MathSciNet  MATH  Google Scholar 

  • Surana KS, Reddy JN (2015) A more complete thermodynamic framework for solid continua. J Therm Eng 1(6):446–459

    MathSciNet  Google Scholar 

  • Tejchman J, Bauer E (2005) Modeling of a cyclic plane strain compression-extension test in granular bodies within a polar hypoplasticity. Granul Matter 7(4):227–242

    Article  MATH  Google Scholar 

  • Trovalusci P, Masiani R (1997) Strain rates of micropolar continua equivalent to discrete systems. Meccanica 32(6):581–583

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell CA (1963) Remarks on hypo-elasticity. J Res Natl Bur Stand—B Math Math Phys 67(3):141–143

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell CA (1966) The elements of continuum mechanics. Springer, Berlin

    MATH  Google Scholar 

  • Truesdell CA, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Trusov PV, Volegov PS, Yanz AY (2015) Two-level models of polycrystalline elastoviscoplasticity: complex loading under large deformations. ZAMM 95(10):1067–1080

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1997a) Hypo-elasticity model based upon the logarithmic stress rate. J Elast 47(1):51–68

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1997b) Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech 124(1–4):89–105

    Article  MathSciNet  MATH  Google Scholar 

  • Yeremeyev VA, Zubov LM (1999) The theory of elastic and viscoelastic micropolar liquids. J Appl Math Mech 63(5):755–767

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Altenbach, H., Eremeyev, V.A. (2016). On Strain Rate Tensors and Constitutive Equations of Inelastic Micropolar Materials. In: Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-31721-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31721-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31719-9

  • Online ISBN: 978-3-319-31721-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics