On Strain Rate Tensors and Constitutive Equations of Inelastic Micropolar Materials

Chapter

Abstract

Following Altenbach and Eremeyev (Int J Plast 63:3–17, 2014) we introduce a new family of strain rate tensors for micropolar materials. With the help of introduced strain rates we discuss the possible forms of constitutive equations of the nonlinear inelastic micropolar continuum, that is micropolar viscous and viscoelastic fluids and solids, hypo-elastic and viscoelastoplastic materials. Considering the fact that some of strain rates are not true tensors but pseudotensors we obtain some constitutive restrictions following from the material frame indifference principle. Using the theory of tensorial invariants we present the general form of constitutive equations of some types of inelastic isotropic micropolar materials including several new constitutive equations.

Keywords

Micropolar continua Strain rate Constitutive equations Finite deformations 

References

  1. Aero EL, Bulygin AN, Kuvshinskii EV (1965) Asymmetric hydromechanics. J Appl Math Mech 29(2):333–346CrossRefMATHGoogle Scholar
  2. Altenbach H, Eremeyev VA (2014) Strain rate tensors and constitutive equations of inelastic micropolar materials. Int J Plast 63:3–17CrossRefGoogle Scholar
  3. Bruhns OT (2014) The Prandtl-Reuss equations revisited. ZAMM 94(3):187–202MathSciNetCrossRefMATHGoogle Scholar
  4. de Borst R (1993) A generalization of \(J_2\)-flow theory for polar continua. Comput Methods Appl Mech Eng 103(3):347–362MathSciNetCrossRefMATHGoogle Scholar
  5. Eremeyev VA, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. J Solids Struct 49(14):1993–2005CrossRefGoogle Scholar
  6. Eremeyev VA, Pietraszkiewicz W (2016) Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math Mech Solids 21(2):210–221MathSciNetCrossRefMATHGoogle Scholar
  7. Eremeyev VA, Lebedev LP, Altenbach H (2013) Foundations of micropolar mechanics. Springer-briefs in applied sciences and technologies. Springer, HeidelbergGoogle Scholar
  8. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16(1):1–18MathSciNetGoogle Scholar
  9. Eringen AC (1999) Microcontinuum field theory. I. Foundations and solids. Springer, New YorkCrossRefMATHGoogle Scholar
  10. Eringen AC (2001) Microcontinuum field theory. II. Fluent media. Springer, New YorkMATHGoogle Scholar
  11. Eringen AC, Kafadar CB (1976) Polar field theories. In: Eringen AC (ed) Continuum physics, vol IV. Academic Press, New York, pp 1–75Google Scholar
  12. Grammenoudis P, Tsakmakis C (2007) Micropolar plasticity theories and their classical limits. Part I: resulting model. Acta Mech 189(3–4):151–175CrossRefMATHGoogle Scholar
  13. Grammenoudis P, Tsakmakis C (2009) Isotropic hardening in micropolar plasticity. Arch Appl Mech 79(4):323–334CrossRefMATHGoogle Scholar
  14. Lebedev LP, Cloud MJ, Eremeyev VA (2010) Tensor analysis with applications in mechanics. World Scientific, New JerseyCrossRefMATHGoogle Scholar
  15. Lippmann H (1969) Eine Cosserat-Theorie des plastischen Fließens. Acta Mech 8(3–4):93–113MATHGoogle Scholar
  16. Łukaszewicz G (1999) Micropolar fluids: theory and applications. Birkhäuser, BostonCrossRefMATHGoogle Scholar
  17. Lurie S, Belov P, Tuchkova N (2005) The application of the multiscale models for description of the dispersed composites. Compos Part A: Appl Sci Manuf 36(2):145–152CrossRefGoogle Scholar
  18. Nowacki W (1986) Theory of asymmetric elasticity. Pergamon-Press, OxfordMATHGoogle Scholar
  19. Pau A, Trovalusci P (2012) Block masonry as equivalent micropolar continua: the role of relative rotations. Acta Mech 223(7):1455–1471CrossRefMATHGoogle Scholar
  20. Pietraszkiewicz W, Eremeyev VA (2009a) On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 46(3–4):774–787MathSciNetCrossRefMATHGoogle Scholar
  21. Pietraszkiewicz W, Eremeyev VA (2009b) On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int J Solids Struct 46(11–12):2477–2480MathSciNetCrossRefMATHGoogle Scholar
  22. Ramezani S, Naghdabadi R (2007) Energy pairs in the micropolar continuum. Int J Solids Struct 44(14–15):4810–4818CrossRefMATHGoogle Scholar
  23. Ramezani S, Naghdabadi R (2010) Micropolar hypo-elasticity. Arch Appl Mech 80(12):1449–1461CrossRefMATHGoogle Scholar
  24. Ramezani S, Naghdabadi R, Sohrabpour S (2008) Non-linear finite element implementation of micropolar hypo-elastic materials. Comput Methods Appl Mech Eng 197(49–50):4149–4159CrossRefMATHGoogle Scholar
  25. Ramezani S, Naghdabadi R, Sohrabpour S (2009) Constitutive equations for micropolar hyper-elastic materials. Int J Solids Struct 46(14–15):2765–2773CrossRefMATHGoogle Scholar
  26. Steinmann P (1994) A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int J Solids Struct 31(8):1063–1084MathSciNetCrossRefMATHGoogle Scholar
  27. Surana KS, Reddy JN (2015) A more complete thermodynamic framework for solid continua. J Therm Eng 1(6):446–459MathSciNetGoogle Scholar
  28. Tejchman J, Bauer E (2005) Modeling of a cyclic plane strain compression-extension test in granular bodies within a polar hypoplasticity. Granul Matter 7(4):227–242CrossRefMATHGoogle Scholar
  29. Trovalusci P, Masiani R (1997) Strain rates of micropolar continua equivalent to discrete systems. Meccanica 32(6):581–583MathSciNetCrossRefMATHGoogle Scholar
  30. Truesdell CA (1963) Remarks on hypo-elasticity. J Res Natl Bur Stand—B Math Math Phys 67(3):141–143MathSciNetCrossRefMATHGoogle Scholar
  31. Truesdell CA (1966) The elements of continuum mechanics. Springer, BerlinMATHGoogle Scholar
  32. Truesdell CA, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, BerlinCrossRefMATHGoogle Scholar
  33. Trusov PV, Volegov PS, Yanz AY (2015) Two-level models of polycrystalline elastoviscoplasticity: complex loading under large deformations. ZAMM 95(10):1067–1080MathSciNetCrossRefMATHGoogle Scholar
  34. Xiao H, Bruhns OT, Meyers A (1997a) Hypo-elasticity model based upon the logarithmic stress rate. J Elast 47(1):51–68MathSciNetCrossRefMATHGoogle Scholar
  35. Xiao H, Bruhns OT, Meyers A (1997b) Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech 124(1–4):89–105MathSciNetCrossRefMATHGoogle Scholar
  36. Yeremeyev VA, Zubov LM (1999) The theory of elastic and viscoelastic micropolar liquids. J Appl Math Mech 63(5):755–767MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Lehrstuhl für Technische Mechanik, Institut für Mechanik, Fakultät für MaschinenbauOtto-von-Guericke-Universtät MagdeburgMagdeburgGermany
  2. 2.Faculty of Mechanical EngineeringRzeszów University of TechnologyRzeszówPoland

Personalised recommendations