Skip to main content

Next-Generation Sequencing Technologies and Plant Improvement

  • Chapter
  • First Online:
Plant Omics: Trends and Applications

Abstract

Hidden information lying underneath the genetic material is yet to be explored. Deciphering genetic information is the basic and primary step in bioscience research. For many years, capillary electrophoresis (CE)-based Sanger’s method prevailed in the scientific world for elucidation of genetic information. Due to lack in resolution, throughput, scalability, speed, and efficiency, it has now been replaced by spectacular next-generation sequencing (NGS) technologies since 5 years. Applications of NGS technologies in the field of plant biology is genome-wide scan for variants, rapid parallel sequencing, marker discovery, epigenetics, transcriptomics, de novo sequencing, resequencing, and high-resolution mapping in less time and money. This chapter briefly describes NGS technologies and utilization of these technologies in studying plant genome for its improvement and better development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MM, Guo H, Huang C, Zhang X, Lin Z (2013) Selection of core SSR markers for fingerprinting upland cotton cultivars and hybrids. Aust J Crop Sci 7(12):1912–1920

    CAS  Google Scholar 

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25(4):195–203

    Article  CAS  Google Scholar 

  • Austin RS, Chatfield SP, Desveaux D, Guttman DS (2014) Next-generation mapping of genetic mutations using bulk population sequencing. Methods Mol Biol 1062:301–315

    Article  PubMed  Google Scholar 

  • Azam S, Thakur V, Uperao PR, Shah T, Balaji J, Amindala B, Farmer AD et al (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results for the identification of SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99:186–192

    Article  CAS  PubMed  Google Scholar 

  • Barba M, Czosnek H, Hadidi A (2014) Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6:106–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  • Bhavisha PS, Vrinda ST (2014) Plant systems biology: insights, advances and challenges. Planta. doi:10.1007/s00425-014-2059-5

    Google Scholar 

  • Bolger ME, Weisshaar B, Scholz U, Stein N, Usadel B, Mayer KF (2014) Plant genome sequencing-applications for crop improvement. Curr Opin Biotech 26:31–37

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yao J, Chu L, Li Y, Guo X, Zhang Y (2014) The development of specific SNP markers for chromosome 14 in cotton using next-generation sequencing. Plant Breeding 133(2):256–261

    Article  CAS  Google Scholar 

  • Chikara SK, Pandey M, Pandey S, Vaidya K, Chaudhary S (2014) Next generation sequencing: a revolutionary tool for plant variety improvement. AJSIH 137–154

    Google Scholar 

  • Cosson P, Decroocq V, Revers F (2014) Development and characterization of 96 microsatellite markers suitable for QTL mapping and accession control in anArabidopsis core collection. Plant Methods 10:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • El-Metwally S, Ouda OM, Helmy M (2014) Next-generation sequence assemblers. In: El-Metwally S, Ouda OM, Helmy M (eds) Next generation sequencing technologies and challenges in sequence assembly, vol 7. Springer, New York, pp 103–116

    Chapter  Google Scholar 

  • Emrich SJ et al (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Sun H, Wang Y, Zhang Y, Wang X, Li D, Yu J, Han C (2014) Deep sequencing-based transcriptome profiling reveals comprehensive insights into the responses ofNicotiana benthamiana to beet necrotic yellow vein virus infections containing or lacking RNA4. PLoS One 9(1):1–12

    Google Scholar 

  • Feuillet C et al (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16(2):77–88

    Article  CAS  PubMed  Google Scholar 

  • Fields S (2007) Molecular biology. Site-seeing by sequencing. Science 316(5830):1441–1442

    Article  CAS  PubMed  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Hollister JD (2014) Genomic variation inArabidopsis: tools and insights from next-generation sequencing. Chromosome Res. doi:10.1007/s10577-014-9420-1

    PubMed  Google Scholar 

  • Hui P (2012) Next generation sequencing: chemistry, technology and applications. Top Curr Chem. doi:10.1007/128_2012_329

    Google Scholar 

  • Jackson SA et al (2011) Sequencing crop genomes: approaches and applications. New Phytol 191(4):915–925

    Article  CAS  PubMed  Google Scholar 

  • Jeennor S, Volkaert H (2014) Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes 10(1):1–14

    Article  Google Scholar 

  • Jenks MA, Hasegawa PM (2014) QTL and association mapping for plant abiotic stress tolerance trait characterization and introgression for crop improvement. In: Fleury D, Langridge P (eds) Plant abiotic stress. Wiley, New York

    Google Scholar 

  • Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Kircher M, Kelso J (2010) High-throughput DNA sequencing—concepts and limitations. Bio Essays 32(6):524–536

    CAS  Google Scholar 

  • Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CLL, Singh S, Tyagi AK, Jain M, Parida SK (2014) An efficient and cost-effective approach for genic microsatellite marker-based large-scale trait association mapping: identification of candidate genes for seed weight in chickpea. Mol Breeding. doi:10.1007/s11032-014-0033-3

    Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Li MY, Wang F, Jiang Q, Ma J, Xiong AS (2014) Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Horticulture Res doi:10.1038/hortres.2014.10

  • Lipshutz RJ, Morris D, Chee M, Hubbell E, Kozal MJ, Shah N, Shen N, Yang R, Fodor SP (1995) Using oligonucleotide probe arrays to access genetic diversity. Biotechniques 19:442–447

    CAS  PubMed  Google Scholar 

  • Lister R et al (2008) Highly integrated single-base resolution maps of the epigenome inArabidopsis. Cell 133:1–14

    Article  Google Scholar 

  • Liu J et al (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A 99(20):13302–13306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yang J, Bi H, Zhang P (2014) Why mosaic? Gene expression profiling of African cassava mosaic virus‐infected cassava reveals the effect of chlorophyll degradation on symptom development. J Integr Plant Biol 56(2):122–132

    Article  CAS  PubMed  Google Scholar 

  • Llaca V (2012) Sequencing technologies and their use in plant biotechnology and breeding. In: Munshi A (ed) DNA sequencing—methods and applications doi:10.5772/37918

    Google Scholar 

  • Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nat Methods 4:613–614

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2009) New strategies and emerging technologies for massively parallel sequencing: applications in medical research. Genome Med 1(4):40

    Article  PubMed  PubMed Central  Google Scholar 

  • Margulies M et al (2006) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Google Scholar 

  • Martin J, Gross S, Schnable J, Choi C, Wang M, Singh K, Lindquist E, Chen F, Wei C, Wang Z (2014) Deep sequencing of a plant transcriptome. U.S. Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA

    Google Scholar 

  • Matsuba Y, Nguyen TTH, Wiegert K, Falara V, Gonzales-Vigil E, Leong B, Schafer P, Kudrna D, Wing RA, Bolger AM et al (2013) Evolution of a complex locus for terpene biosynthesis in solanum. Plant Cell 25:2022–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74(2):560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meaburn E, Schulz R (2012) Next generation sequencing in epigenetics: Insights and challenges. Sem Cell Dev Biol 23(2):192–199

    Article  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, Donovan AO, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen M, Hansen RF, Hansen AJ, Morling N (2014) Massively parallel pyrosequencing 454 methodology of the mitochondrial genome in forensic genetics. Forensic Sci Int Genet. doi:10.1016/j.fsigen.2014.03.014

    Google Scholar 

  • Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2009) Tablet—next generation sequence assembly visualization. Bioinformatics 26(3):401–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Myllykangas S, Buenrostro J, Hanlee PJ (2012) Overview of sequencing technology platforms. In: Rodríguez-Ezpeleta N, Hackenberg M, Aransay AM Springer (ed) Bioinformatics for high throughput sequencing, Springer NY, pp 11–25

    Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    Article  CAS  PubMed  Google Scholar 

  • Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Anderson JM, Morehead NHW, Adhikary D, Jellen EN, Maughan PJ, Guedira GLB, Chao S, Beattie AD, Carson ML, Rines HW, Obert DE, Bonman JM, Jackson EW (2011) Model SNP development for complex genomes based onhexaploid oat using high-throughput 454 sequencing technology. BMC Genomics 12:77–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond QTL. Trends Genet 19(6):303–306

    Article  CAS  PubMed  Google Scholar 

  • Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294:1719–1723

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca JM, Díez MJ, Prohens J, Picó B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93:105–111

    Article  CAS  PubMed  Google Scholar 

  • Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657

    Article  CAS  PubMed  Google Scholar 

  • Rwahnih A, Daubert M, Golino S, Rowhani D (2009) Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387:395–401

    Article  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10(6):297–304

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16(5):282–288

    Article  CAS  PubMed  Google Scholar 

  • Schuster SC (2008a) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18

    Article  CAS  PubMed  Google Scholar 

  • Schuster SC (2008b) Next-generation sequencing transforms today’s biology. Nature Publishing Group doi:10.1038/NMETH1156

    Google Scholar 

  • Schuster SC et al (2008) Method of the year, next-generation DNA sequencing. Functional genomics and medical applications. Nat Methods 5:11–21

    Article  Google Scholar 

  • Sheth BP, Thaker VS (2014) Plant systems biology: insights, advances and challenges. Planta. doi:10.1007/s00425-014-2059-5

    PubMed  Google Scholar 

  • Tabbasam N, Zafar Y, Mehboob-ur-Rahman (2014) Pros and cons of using genomic SSRs and EST-SSRs for resolving phylogeny of the genus Gossypium. Plant Syst Evol 300:559–575

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    Article  CAS  PubMed  Google Scholar 

  • Visendi P, Batley J, Edwards D (2014) Genomics of plant genetic resources. In: Tuberosa R, Graner A, Frison E (eds) Next generation sequencing and germplasm resources. Springer, New York, pp 369–390

    Google Scholar 

  • Vives MC, Velazquez K, Pina JA, Moreno P, Guerri J, Navarro L (2013) Identification of a new enamovirus associated with citrus vein enation disease by deep sequencing of small RNAs. Phytopathology 103:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Haung H, Ma Y, Fu J, Wang L, Dai S (2014) Construction and de novo characterization of a transcriptome of: analysis of gene expression patterns in floral bud emergence. Plant Cell Tiss Org Cult 116(3):2970309

    Article  Google Scholar 

  • Waugh R, Flavell AJ, Russell J, Thomas WB, Ramsay L, Comadran J (2014) Exploiting Barley genetic resources for genome wide association scans (GWAS). In: Tuberosa R, Graner A, Frison E (ed) Genomics of plant genetic resources, Springer NY, pp 237–254

    Google Scholar 

  • Yockteng AR, Almeida AMR, Yee S, Andre T, Hill C, Specht CD (2013) A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression. Appl Plant Sci 1(12):1–6

    Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, Mccown B et al (2012) Using next-generation sequencing approaches for the isolation of simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  CAS  PubMed  Google Scholar 

  • Zhu C et al (2008) Status and prospects of association mapping in plants. Plant Gen J 1(1):5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Afzal, F., Gul, A., Kazi, A.M. (2016). Next-Generation Sequencing Technologies and Plant Improvement. In: Hakeem, K., Tombuloğlu, H., Tombuloğlu, G. (eds) Plant Omics: Trends and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_11

Download citation

Publish with us

Policies and ethics