A Graph Traversal Based Approach to Answer Non-Aggregation Questions over DBpedia

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9544)


We present a question answering system over DBpedia, filling the gap between user information needs expressed in natural language and a structured query interface expressed in SPARQL over the underlying knowledge base (KB). Given the KB, our goal is to comprehend a natural language query and provide corresponding accurate answers. Focusing on solving the non-aggregation questions, in this paper, we construct a subgraph of the knowledge base from the detected entities and propose a graph traversal method to solve both the semantic item mapping problem and the disambiguation problem in a joint way. Compared with existing work, we simplify the process of query intention understanding and pay more attention to the answer path ranking. We evaluate our method on a non-aggregation question dataset and further on a complete dataset. Experimental results show that our method achieves best performance compared with several state-of-the-art systems.


Question Answering Non-aggregation questions Linked data Graph traversal Path ranking 



This work was partially supported by the National Science Foundation of China (project No: 61402173) and the Fundamental Research Funds for the Central Universities (Grant No: 22A201514045).


  1. 1.
    Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: EMNLP, pp. 1533–1544 (2013)Google Scholar
  2. 2.
    Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: Proceedings of ACL. vol. 7, p. 92 (2014)Google Scholar
  3. 3.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)Google Scholar
  4. 4.
    Cimiano, P., Lopez, V., Unger, C., Cabrio, E., Ngonga Ngomo, A.-C., Walter, S.: Multilingual question answering over linked data (QALD-3): Lab overview. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 321–332. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Dima, C.: Intui2: A prototype system for question answering over linked data. In: Proceedings of the Question Answering over Linked Data lab (QALD-3) at CLEF (2013)Google Scholar
  6. 6.
    Fader, A., Zettlemoyer, L.S., Etzioni, O.: Paraphrase-driven learning for open question answering. In: ACL (1), pp. 1608–1618. Citeseer (2013)Google Scholar
  7. 7.
    Giannone, C., Bellomaria, V., Basili, R.: A hmm-based approach to question answering against linked data. In: Proceedings of the Question Answering over Linked Data lab (QALD-3) at CLEF (2013)Google Scholar
  8. 8.
    Han, L., Kashyap, A., Finin, T., Mayfield, J., Weese, J.: Umbc ebiquity-core: Semantic textual similarity systems. Proc. Sec. Joint Conf. Lexical Comput. Seman. 1, 44–52 (2013)Google Scholar
  9. 9.
    He, S., Liu, K., Zhang, Y., Xu, L., Zhao, J.: Question answering over linked data using first-order logic. In: Proceedings of Empirical Methods in Natural Language Processing (2014)Google Scholar
  10. 10.
    He, S., Liu, S., Chen, Y., Zhou, G., Liu, K., Zhao, J.: Casia@ qald-3: A question answering system over linked data. In: Proceedings of the Question Answering over Linked Data lab (QALD-3) at CLEF (2013)Google Scholar
  11. 11.
    Joris, G., Ferré, S.: Scalewelis: a scalable query-based faceted search system on top of sparql endpoints. In: Work Multilingual Question Answering over Linked Data (QALD-3) (2013)Google Scholar
  12. 12.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web (2014)Google Scholar
  13. 13.
    Lopez, V., Fernández, M., Motta, E., Stieler, N.: Poweraqua: Supporting users in querying and exploring the semantic web. Seman. Web 3(3), 249–265 (2012)Google Scholar
  14. 14.
    Lopez, V., Uren, V., Sabou, M., Motta, E.: Is question answering fit for the semantic web?: A survey. Seman. Web 2(2), 125–155 (2011)Google Scholar
  15. 15.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford corenlp natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)Google Scholar
  16. 16.
    Milne, D., Witten, I.H.: An open-source toolkit for mining wikipedia. Artif. Intell. 194, 222–239 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pradel, C., Peyet, G., Haemmerlé, O., Hernandez, N.: Swip at qald-3: Results, criticisms and lesson learned. Valencia, Spain (2013)Google Scholar
  18. 18.
    Shekarpour, S., Ngonga Ngomo, A.C., Auer, S.: Question answering on interlinked data. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1145–1156. International World Wide Web Conferences Steering Committee (2013)Google Scholar
  19. 19.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)Google Scholar
  20. 20.
    Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C., Gerber, D., Cimiano, P.: Template-based question answering over rdf data. In: Proceedings of the 21st International Conference on World Wide Web, pp. 639–648. ACM (2012)Google Scholar
  21. 21.
    Xu, K., Zhang, S., Feng, Y., Huang, S., Zhao, D.: What is the longest river in the usa? semantic parsing for aggregation questions. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)Google Scholar
  22. 22.
    Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.: Natural language questions for the web of data. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 379–390. Association for Computational Linguistics (2012)Google Scholar
  23. 23.
    Yahya, M., Berberich, K., Elbassuoni, S., Weikum, G.: Robust question answering over the web of linked data. In: Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management, pp. 1107–1116. ACM (2013)Google Scholar
  24. 24.
    Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language question answering over rdf: A graph data driven approach. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 313–324. ACM (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.East China University of Science and TechnologyShanghaiChina

Personalised recommendations