Light-Emitting Electrochemical Cells

  • Chia-Yu Cheng
  • Hai-Ching SuEmail author
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)


Recently, solid-state light-emitting electrochemical cells (LECs) have attracted intense attention due to simple device structure, low operation voltage and high power efficiency. Compatibility with simple solution processes and superior device efficiency are beneficial in display and lighting applications. In this chapter, the working mechanism of LECs is introduced and some previous important works on LECs, such as LECs with various emission colors, topics on device lifetime and turn-on time of LECs and novel device technologies on LEC device structures are reviewed. Finally, conclusions and outlooks for LECs are discussed.


Ionic Liquid High Occupied Molecular Orbital Power Efficiency Emissive Layer Iridium Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Color conversion layer


Commission Internationale de L’Eclairage


Color rendering index


Electrochemical doping




Electric double layers




External quantum efficiency


Full width at half maximum


Highest occupied molecular orbital


Ionic transition metal complexes


Light-emitting electrochemical cells


Lowest unoccupied molecular orbital


Metal-to-ligand charge transfer




Organic light -emitting diodes


Polymer light -emitting electrochemical cells


Photoluminescent quantum yield


Scanning Kelvin probe microscopy


White light -emitting electrochemical cells


  1. 1.
    Pei Q, Yu G, Zhang C et al (1995) Science 269:1086CrossRefGoogle Scholar
  2. 2.
    Gao J, Dane J (2003) Appl Phys Lett 83:3027CrossRefGoogle Scholar
  3. 3.
    Dane J, Tracy C, Gao J (2005) Appl Phys Lett 86:153509CrossRefGoogle Scholar
  4. 4.
    Dane J, Gao J (2004) Appl Phys Lett 85:3905CrossRefGoogle Scholar
  5. 5.
    Shin JH, Matyba P, Robinson ND et al (2007) Electrochim Acta 52:6456CrossRefGoogle Scholar
  6. 6.
    Matyba P, Maturova K, Kemerink M et al (2009) Nat Mater 8:672CrossRefGoogle Scholar
  7. 7.
    Rodovsky DB, Reid OG, Pingree LS et al (2010) ACS Nano 4:2673CrossRefGoogle Scholar
  8. 8.
    Edman L (2005) Electrochim Acta 50:3878CrossRefGoogle Scholar
  9. 9.
    Sun Q, Li Y, Pei Q (2007) IEEE/OSA J Disp Technol 3:211CrossRefGoogle Scholar
  10. 10.
    Yang C, Sun Q, Qiao J et al (2003) J Phys Chem B 107:12981CrossRefGoogle Scholar
  11. 11.
    Pingree LS, Rodovsky DB, Coffey DC et al (2007) J Am Chem Soc 129:15903CrossRefGoogle Scholar
  12. 12.
    Slinker JD, Defranco JA, Jaquith MJ et al (2007) Nat Mater 6:894CrossRefGoogle Scholar
  13. 13.
    Pei Q, Heeger AJ (2008) Nat Mater 7:167CrossRefGoogle Scholar
  14. 14.
    Hu Y, Gao J (2011) J Am Chem Soc 133:2227CrossRefGoogle Scholar
  15. 15.
    Van Reenen S, Matyba P, Dzwilewski A et al (2010) J Am Chem Soc 132:13776CrossRefGoogle Scholar
  16. 16.
    Rudmann H, Shimada S, Rubner MF (2003) J Appl Phys 94:115CrossRefGoogle Scholar
  17. 17.
    Li Y, Gao J, Yu G et al (1998) Chem Phys Lett 287:83CrossRefGoogle Scholar
  18. 18.
    Lenes M, Garcia‐Belmonte G, Tordera D et al (2011) Adv Funct Mater 21:1581CrossRefGoogle Scholar
  19. 19.
    Ng WY, Gong X, Chan WK (1999) Chem Mater 11:1165CrossRefGoogle Scholar
  20. 20.
    Suzuki H (2000) Appl Phys Lett 76:1543CrossRefGoogle Scholar
  21. 21.
    Suzuki H (2004) J Photochem Photobiol A Chem 166:155CrossRefGoogle Scholar
  22. 22.
    Hosseini AR, Koh CY, Slinker JD et al (2005) Chem Mater 17:6114CrossRefGoogle Scholar
  23. 23.
    Bolink HJ, Cappelli L, Coronado E et al (2005) Inorg Chem 44:5966CrossRefGoogle Scholar
  24. 24.
    Wang S, Li X, Xun S et al (2006) Macromolecules 39:7502CrossRefGoogle Scholar
  25. 25.
    Xun S, Zhang J, Li X et al (2008) Synth Met 158:484CrossRefGoogle Scholar
  26. 26.
    Bolink HJ, Coronado E, Costa RD et al (2009) Inorg Chem 48:3907CrossRefGoogle Scholar
  27. 27.
    Ho CC, Chen HF, Ho YC et al (2011) Phys Chem Chem Phys 13:17729CrossRefGoogle Scholar
  28. 28.
    Lee CL, Cheng CY, Su HC (2014) Org Electron 15:711CrossRefGoogle Scholar
  29. 29.
    Tamayo AB, Garon S, Sajoto T et al (2005) Inorg Chem 44:8723CrossRefGoogle Scholar
  30. 30.
    Su HC, Chen HF, Fang FC et al (2008) J Am Chem Soc 130:3413CrossRefGoogle Scholar
  31. 31.
    He L, Qiao J, Duan L et al (2009) Adv Funct Mater 19:2950CrossRefGoogle Scholar
  32. 32.
    Rodríguez-Redondo JL, Costa RD, Ortí E et al (2009) Dalton Trans 9787Google Scholar
  33. 33.
    Chen HF, Wong KT, Liu YH et al (2011) J Mater Chem 21:768CrossRefGoogle Scholar
  34. 34.
    Costa RD, Céspedes-Guirao FJ, Ortí E et al (2009) Chem Commun 3886Google Scholar
  35. 35.
    Chen FC, Yang Y, Pei Q (2002) Appl Phys Lett 81:4278CrossRefGoogle Scholar
  36. 36.
    Su HC, Lin YH, Chang CH et al (2010) J Mater Chem 20:5521CrossRefGoogle Scholar
  37. 37.
    Costa RD, Ortí E, Bolink HJ et al (2009) Adv Funct Mater 19:3456CrossRefGoogle Scholar
  38. 38.
    Su HC, Fang FC, Hwu TY et al (2007) Adv Funct Mater 17:1019CrossRefGoogle Scholar
  39. 39.
    Su HC, Wu CC, Fang FC et al (2006) Appl Phys Lett 89:261118CrossRefGoogle Scholar
  40. 40.
    Slinker JD, Gorodetsky AA, Lowry MS et al (2004) J Am Chem Soc 126:2763CrossRefGoogle Scholar
  41. 41.
    Slinker JD, Koh CY, Malliaras GG et al (2005) Appl Phys Lett 86:173506CrossRefGoogle Scholar
  42. 42.
    Lowry MS, Goldsmith JI, Slinker JD et al (2005) Chem Mater 17:5712CrossRefGoogle Scholar
  43. 43.
    Bolink HJ, Cappelli L, Coronado E et al (2006) Chem Mater 18:2778CrossRefGoogle Scholar
  44. 44.
    Yang Y, Pei Q (1996) Appl Phys Lett 68:2708CrossRefGoogle Scholar
  45. 45.
    Fang J, Matyba P, Edman L (2009) Adv Funct Mater 19:2671CrossRefGoogle Scholar
  46. 46.
    Yang Y, Pei Q (1997) J Appl Phys 81:3294CrossRefGoogle Scholar
  47. 47.
    Yu Z, Wang M, Lei G et al (2011) J Phys Chem Lett 2:367CrossRefGoogle Scholar
  48. 48.
    Slinker JD, Rivnay J, Moskowitz JS et al (2007) J Mater Chem 17:2976CrossRefGoogle Scholar
  49. 49.
    Terki R, Simoneau L-P, Rochefort A (2008) J Phys Chem A 113:534CrossRefGoogle Scholar
  50. 50.
    He L, Duan L, Qiao J et al (2008) Adv Funct Mater 18:2123CrossRefGoogle Scholar
  51. 51.
    He L, Duan L, Qiao J et al (2010) Chem Mater 22:3535CrossRefGoogle Scholar
  52. 52.
    Mydlak M, Bizzarri C, Hartmann D et al (2010) Adv Funct Mater 20:1812CrossRefGoogle Scholar
  53. 53.
    Bolink HJ, Cappelli L, Cheylan S et al (2007) J Mater Chem 17:5032CrossRefGoogle Scholar
  54. 54.
    Yang CH, Beltran J, Lemaur V et al (2010) Inorg Chem 49:9891CrossRefGoogle Scholar
  55. 55.
    Chen HF, Liao CT, Chen TC et al (2011) J Mater Chem 21:4175CrossRefGoogle Scholar
  56. 56.
    Cimrová V, Schmidt W, Rulkens R et al (1996) Adv Mater 8:585CrossRefGoogle Scholar
  57. 57.
    Chen HF, Liao CT, Kuo MC et al (2012) Org Electron 13:1765CrossRefGoogle Scholar
  58. 58.
    Sun M, Zhong C, Li F et al (2010) Macromolecules 43:1714CrossRefGoogle Scholar
  59. 59.
    Tang S, Pan J, Buchholz H et al (2011) ACS Appl Mater Interfaces 3:3384CrossRefGoogle Scholar
  60. 60.
    Tang S, Pan J, Buchholz HA et al (2013) J Am Chem Soc 135:3647CrossRefGoogle Scholar
  61. 61.
    Tsai CS, Yang SH, Liu BC et al (2013) Org Electron 14:488CrossRefGoogle Scholar
  62. 62.
    Su HC, Chen HF, Shen YC et al (2011) J Mater Chem 21:9653CrossRefGoogle Scholar
  63. 63.
    Chen B, Li Y, Chu Y et al (2013) Org Electron 14:744CrossRefGoogle Scholar
  64. 64.
    Shao Y, Bazan GC, Heeger AJ (2007) Adv Mater 19:365CrossRefGoogle Scholar
  65. 65.
    Wågberg T, Hania PR, Robinson ND et al (2008) Adv Mater 20:1744CrossRefGoogle Scholar
  66. 66.
    Fang J, Matyba P, Robinson ND et al (2008) J Am Chem Soc 130:4562CrossRefGoogle Scholar
  67. 67.
    Zhang Y, Gao J (2006) J Appl Phys 100:084501CrossRefGoogle Scholar
  68. 68.
    Kalyuzhny G, Buda M, Mcneill J et al (2003) J Am Chem Soc 125:6272CrossRefGoogle Scholar
  69. 69.
    Zhao W, Liu CY, Wang Q et al (2005) Chem Mater 17:6403CrossRefGoogle Scholar
  70. 70.
    Bolink HJ, Coronado E, Costa RD et al (2008) Adv Mater 20:3910CrossRefGoogle Scholar
  71. 71.
    Lee K, Slinker J, Gorodetsky A et al (2003) Phys Chem Chem Phys 5:2706CrossRefGoogle Scholar
  72. 72.
    Buda M, Kalyuzhny G, Bard AJ (2002) J Am Chem Soc 124:6090CrossRefGoogle Scholar
  73. 73.
    Zysman-Colman E, Slinker JD, Parker JB et al (2007) Chem Mater 20:388CrossRefGoogle Scholar
  74. 74.
    Su HC, Chen HF, Wu CC et al (2008) Chem Asian J 3:1922CrossRefGoogle Scholar
  75. 75.
    Kwon TH, Oh YH, Shin IS et al (2009) Adv Funct Mater 19:711CrossRefGoogle Scholar
  76. 76.
    Parker ST, Slinker JD, Lowry MS et al (2005) Chem Mater 17:3187CrossRefGoogle Scholar
  77. 77.
    Costa RD, Pertegás A, Ortí E et al (2010) Chem Mater 22:1288CrossRefGoogle Scholar
  78. 78.
    Rudmann H, Rubner M (2001) J Appl Phys 90:4338CrossRefGoogle Scholar
  79. 79.
    Rudmann H, Shimada S, Rubner MF (2002) J Am Chem Soc 124:4918CrossRefGoogle Scholar
  80. 80.
    Tordera D, Meier S, Lenes M et al (2012) Adv Mater 24:897CrossRefGoogle Scholar
  81. 81.
    Lu JS, Kuo JC, Su HC (2013) Org Electron 14:3379CrossRefGoogle Scholar
  82. 82.
    Wang TW, Su HC (2013) Org Electron 14:2269CrossRefGoogle Scholar
  83. 83.
    Jhang YP, Chen HF, Wu HB et al (2013) Org Electron 14:2424CrossRefGoogle Scholar
  84. 84.
    Lin GR, Chen HF, Shih HC et al (2015) Phys Chem Chem Phys 17:6956CrossRefGoogle Scholar
  85. 85.
    Chutinan A, Ishihara K, Asano T et al (2005) Org Electron 6:3CrossRefGoogle Scholar
  86. 86.
    Kaihovirta N, Larsen C, Edman L (2014) ACS Appl Mater Interfaces 6:2940CrossRefGoogle Scholar
  87. 87.
    Lu JS, Chen HF, Kuo JC et al (2015) J Mater Chem C 3:2802CrossRefGoogle Scholar
  88. 88.
    Cheng CY, Wang CW, Cheng JR et al (2015) J Mater Chem C 3:5665CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Lighting and Energy PhotonicsNational Chiao Tung UniversityTainanTaiwan

Personalised recommendations