Organic Light-Emitting Diodes (OLEDs): Working Principles and Device Technology

  • Umberto GiovanellaEmail author
  • Mariacecilia Pasini
  • Chiara Botta
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)


Organic electronics is a field of material science that has encountered a rapid advance over the last few decades and has now reached the commercial marketplace. Its most relevant example is represented by Organic Light-Emitting Diodes (OLEDs) technology, able to combine the device low energy consumption and low production costs with many additional appealing features, such as large emitting surfaces, transparency and flexibility, color-tunability and color-quality. These unique properties of OLEDs allow to design low cost, large area flexible displays and white lighting sources that can fit to many different environmental requirements, resulting in tremendous benefits in imaging, lighting, automotive, transportation, communication, agriculture and medicine.

This chapter provides an overview on the basic working principles of the devices with the analysis of the different kinds of emission mechanisms and the methods to improve quantum efficiency by optimization of the device architecture. The main classes of materials employed in OLED technology are presented focusing on few representative examples while the challenges to be faced by future research on material and device stability are discussed in view of commercialization applications. Some of the outstanding results recently obtained in white OLEDs (WOLEDs), able to produce a revolution in the next generation lighting industry, are also presented at the end of the chapter.


Microlens Array Delay Fluorescence Hole Transport Layer Triplet Exciton Correlate Colour Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Efficiency of photoluminescence


Colour temperature


Commission Internationale de l’Eclairage


Colour rendering index


Charge transfer


Delayed fluorescence


Electron affinity


Electron blocking layers


Electron injection layers




Emitting material layer


External quantum efficiency


Energy transfer


Triplet energy levels


Electron transport layers


Förster resonance ET


Hole blocking layers


Hole injection layers


Highest occupied molecular orbital


Hole transport layers


Internal conversion


Inter system crossing


Ionization potential


Internal quantum efficiency of electroluminescence


Indium tin oxide


Critical current density






Luminous or current efficiency


Lowest unoccupied molecular orbital


Molecular weight


Organic light emitting diode


Power efficiencies


Phosphorescent OLED




Polymer OLED


Reverse inter system crossing


Small molecule OLED


Thermally activated delayed fluorescence


Glass transition temperatures


Triplet–triplet annihilation


Applied voltage


White light organic emitting diode


Singlet-triplet energy splitting


Fraction of light coupled out of the structure into the viewing direction


Work function


  1. 1.
    Forrest SR (2004) Nature 428:911PubMedGoogle Scholar
  2. 2.
    Kamtekar KT, Monkman AP, Bryce MR (2010) Adv Mater 22:572PubMedGoogle Scholar
  3. 3.
    Adachi C (2014) Jpn J Appl Phys 53:060101Google Scholar
  4. 4.
    Helfrich W, Schneider WG (1965) Phys Rev Lett 14:229Google Scholar
  5. 5.
    Tang CW, VanSlyke SA (1987) Appl Phys Lett 51:913Google Scholar
  6. 6.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Nature 347:539Google Scholar
  7. 7.
    Wang J, Zhang F, Zhang J, Tang W, Tang A, Peng H, Xu Z, Teng F, Wang Y (2013) J Photochem Photob C Photochem Rev 17:69Google Scholar
  8. 8.
    Kim M, Kyu Jeon S, Hwang S-H, Yeob Lee J (2015) Adv Mater 27:2515PubMedGoogle Scholar
  9. 9.
    Thejokalyani N, Dhoble SJ (2014) Renew Sust Energ Rev 32:448Google Scholar
  10. 10.
    Gather MC, Köhnen A, Meerholz K (2011) Adv Mater 23:233PubMedGoogle Scholar
  11. 11.
    Elliott PIP (2013) Annu Rep Prog Chem Sect A Inorg Chem 109:360Google Scholar
  12. 12.
    Pope M, Swenberg CE (1982) Electronic processes in organic crystals. Clarendon, OxfordGoogle Scholar
  13. 13.
    Dong H, Fu X, Liu J, Wang Z, Hu W (2013) Adv Mater 25:6158PubMedGoogle Scholar
  14. 14.
    Facchetti A (2011) Chem Mater 23:733Google Scholar
  15. 15.
    Kuik M, Wetzelaer G-JAH, Nicolai HT, Craciun NI, De Leeuw DM, Blom PWM (2014) Adv Mater 26:512PubMedGoogle Scholar
  16. 16.
    Chou P-T, Chi Y (2007) Chem Eur J 13:380PubMedGoogle Scholar
  17. 17.
    Kim SY, Jeong WI, Mayr C, Park YS, Kim KH, Lee JH, Moon CK, Brütting W, Kim JJ (2013) Adv Funct Mater 23:3896Google Scholar
  18. 18.
    Chiang C-J, Kimyonok A, Etherington MK, Griffiths GC, Jankus V, Turksoy F, Monkman AP (2013) Adv Funct Mater 23:739Google Scholar
  19. 19.
    Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C (2014) Nat Photonics 8:326Google Scholar
  20. 20.
    Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W (2014) Adv Mater 26:7931PubMedGoogle Scholar
  21. 21.
    Cariati E, Lucenti E, Botta C, Giovanella U, Marinotto D, Righetto S (2015) Coord Chem Revi 306:566Google Scholar
  22. 22.
    Zhu Z-Q, Fleetham T, Turner E, Li J (2015) Adv Mater 27:2533PubMedGoogle Scholar
  23. 23.
    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Nature 492:234PubMedGoogle Scholar
  24. 24.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  25. 25.
    Chen J, Zhao F, Ma D (2014) Mater Today 17:175Google Scholar
  26. 26.
    Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR (2006) Nature 440:908PubMedGoogle Scholar
  27. 27.
    Schwartz G, Reineke S, Conrad Rosenow T, Walzer K (2009) K Leo Adv Funct Mater 19:1319Google Scholar
  28. 28.
    Schwartz G, Reineke S, Conrad Rosenow T, Walzer K (2007) K Leo Adv Mater 19:3672Google Scholar
  29. 29.
    Rosenow TC, Furno M, Reineke S, Olthof S, Lüssem B, Leo K (2010) J Appl Phys 108:113113Google Scholar
  30. 30.
    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K (2009) Nature 459:234PubMedGoogle Scholar
  31. 31.
    Gu G, Garbuzov DZ, Burrows PE, Vendakesh S, Forrest SR, Thompson ME (1997) Opt Lett 22:396PubMedGoogle Scholar
  32. 32.
    Forrest SR, Bradley DDC, Thompson ME (2003) Adv Mater 15:1043Google Scholar
  33. 33.
    Gong X, Robinson MR, Ostrowski JC, Moses D, Bazan GC, Heeger AJ (2002) Adv Mater 14:581Google Scholar
  34. 34.
    Murawski C, Leo K, Gather MC (2013) Adv Mater 25:6801PubMedGoogle Scholar
  35. 35.
    Baldo MA, Adachi C, Forrest SR (2000) Phys Rev B 62:10967Google Scholar
  36. 36.
  37. 37.
    Gaspar DJ, Polikarpov E (2015) OLED fundamentals: materials, devices, and processing of organic light, CRC Press, Boca Raton (chapter 2, Substrates, A. Bhabdari, D.J. Gaspar)Google Scholar
  38. 38.
    Facchetti A, Marks TJ (2010) “Transparent electronics”. From synthesis to applications. Wiley, ChichesterGoogle Scholar
  39. 39.
    Yang Y, Westerweele E, Zhang C, Smith P, Heeger AJ (1995) J Appl Phys 77:694Google Scholar
  40. 40.
    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12(7):48Google Scholar
  41. 41.
    Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) ACS Nano 4(1):43PubMedGoogle Scholar
  42. 42.
    Kwong RC, Nugent MR, Michalski L, Ngo T, Rajan K, Tung Y-J, Weaver MS, Zhou TX, Hack M, Thompson ME, Forrest SR, Brown JJ (2002) Appl Phys Lett 81:162Google Scholar
  43. 43.
    Lamansky S, Djurovich PI, Abdel-Razzaq F, Garon S, Murphy DL, Thompson ME (2002) J Appl Phys 92:1570Google Scholar
  44. 44.
    VanSlyke SA, Chen CH, Tang CW (1996) Appl Phys Lett 69:2160Google Scholar
  45. 45.
    Adachi C, Tsutsui T, Saito S (1991) Optoelectron Devices Technol 6:25Google Scholar
  46. 46.
    Schein LB (1992) Philos Mag B 65:795Google Scholar
  47. 47.
    Salbeck J, Yu N, Bauer J, Weissortel F, Bestgen H (1997) Synth Met 91:209Google Scholar
  48. 48.
    Sun Y, Forrest SR (2007) Appl Phys Lett 91:236503Google Scholar
  49. 49.
    Eom S-H, Zheng Y, Chopra N, Lee J, So F, Xue J (2008) Appl Phys Lett 93:123309Google Scholar
  50. 50.
    Lee CW, Lee JY (2013) Org Electron 14:370Google Scholar
  51. 51.
    Giovanella U, Betti P, Bolognesi A, Destri S, Melucci M, Pasini M, Porzio W, Botta C (2010) Org Electron 11:2012Google Scholar
  52. 52.
    Zuniga CA, Barlow S, Marder SR (2011) Chem Mater 23:658Google Scholar
  53. 53.
    Huang F, Cheng Y-J, Zhang Y, Liu MS, Jen AK-Y (2008) J Mater Chem 18:4495Google Scholar
  54. 54.
    Scopelliti R, Zuppiroli L, Graetzel M, Nazeeruddin MK (2008) Inorg Chem 47:6575PubMedGoogle Scholar
  55. 55.
    Jou JH, Hsu MF, Wang WB, Chin CL, Chung YC, Chen CT, Shyue JJ, Shen SM, Wu MH, Chang WC, Liu CP, Chen SZ, Chen HY (2009) Chem Mater 21:2565Google Scholar
  56. 56.
    Ryu DW, Kim KS, Choi CK, Park YI, Kang IN, Park JW (2007) Curr Appl Phys 7:396Google Scholar
  57. 57.
    Cheng JA, Chen CH, Liao CH (2004) Chem Mater 16:2862Google Scholar
  58. 58.
    Duan L, Hou L, Lee T-W, Qiao J, Zhang D, Dong G, Wang L, Qiu Y (2010) J Mater Chem 20:6392Google Scholar
  59. 59.
    Li TX, Yamamoto T, Lan HL, Kido J (2004) Polym Adv Technol 15:266Google Scholar
  60. 60.
    Kim SH, Cho I, Sim MK, Park S, Young Park S (2011) J Mater Chem 21:9139Google Scholar
  61. 61.
    Wu C-H, Chien C-H, Hsu F-M, Shih P-I, Shu C-F (2009) J Mater Chem 19:1464Google Scholar
  62. 62.
    Ku S-Y, Chi L-C, Hung W-Y, Yang S-W, Tsai T-C, Wong K-T, Chenc Y-H, Wu C-I (2009) J Mater Chem 19:773Google Scholar
  63. 63.
    Bucinskas A, Volyniuk D, Danyliv Y, Grazulevicius JV, Baryshnikov G, Minaev B, Ivaniuk K, Cherpak V, Stakhira P (2015) RSC Adv 5:78150Google Scholar
  64. 64.
    Zhang H, Xu X, Qiu W, Qi T, Gao X, Liu Y, Lu K, Du C, Yu G, Liu Y (2008) J Phys Chem C 112:34Google Scholar
  65. 65.
    Gifford AP, Zhu Y, Lou Y, Jenekhe SA (2006) Chem Mater 18:20Google Scholar
  66. 66.
    Kulkarni AP, Kong X, Jenekhe SA (2006) Adv Funct Mater 16:1057, J.M. HancockGoogle Scholar
  67. 67.
    Chiang CL, Wu MT, Dai DC, Wen YS, Wang JK, Chen CT (2005) Adv Funct Mater 15:231Google Scholar
  68. 68.
    Wei P, Duan L, Zhang DQ, Qiao J, Wang LD, Wang RJ, Dong GF, Qiu Y (2008) J Mater Chem 18:806Google Scholar
  69. 69.
    Qiu Y, Wei P, Zhang DQ, Qiao J, Duan L, Li YK, Gao YD, Wang LD (2006) Adv Mater 18:1607Google Scholar
  70. 70.
    Yang Y, Zhou Y, He Q-G, He C, Yang C-H, Bai F-L, Li Y-F (2009) J Phys Chem B 113:7745PubMedGoogle Scholar
  71. 71.
    Thangthong A, Prachumrak N, Sudyoadsuk T, Namuangruk S, Keawin T, Jungsuttiwonga S, Kungwan N (2015) V Promarak Org El 21:117Google Scholar
  72. 72.
    Yeh H-C, Chan L-H, Wua W-C, Chen C-T (2004) J Mater Chem 14:1293Google Scholar
  73. 73.
    Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Chem Rev 109:897PubMedGoogle Scholar
  74. 74.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Nature 345:539Google Scholar
  75. 75.
    Braun D, Heeger AJ, Kroemer H (1991) J Electron Mater 20:945Google Scholar
  76. 76.
    Bernius M, Inbasekaran M, O’Brien J, Wu W (2000) Adv Mater 12:1737Google Scholar
  77. 77.
    Bernius M, Inbasekaran M, Woo E, Wu W, Wujkowski L (2000) J Mater Sci Mater Electron 11:111Google Scholar
  78. 78.
    Bernius M, Inbasekaran M, Woo E, Wu W, Wujkowski L (2000) Thin Solid Films 363:55Google Scholar
  79. 79.
    Inbasekaran M, Woo E, Bernius M, Wujkowski L (2000) Synth Met 111–112:397Google Scholar
  80. 80.
    Grem G, Leditzky G, Ullrich B, Leising B (1992) Adv Mater 4:36Google Scholar
  81. 81.
    Roncali J (1992) Chem Rev 92(4):711Google Scholar
  82. 82.
    Bolognesi A, Pasini M (2007) Synthetic methods for semiconducting polymers, Semiconducting polymers. Wiley-VCH, WeinheimGoogle Scholar
  83. 83.
    Pal B, Yen W-C, Yang J-S, Su W-F (2007) Macromolecules 40(23):8189Google Scholar
  84. 84.
    Chen P, Yang G, Liu T, Li T, Wang M, Huang W (2006) Polym Int 55:473, and references thereinGoogle Scholar
  85. 85.
    Giovanella U, Botta C, Galeotti F, Vercelli B, Battiato S, Pasini M (2013) J Mater Chem C 1(34):5322Google Scholar
  86. 86.
    Morii K, Ishida M, Takashima T, Shimoda T, Wang Q, Nazeeruddin MK, Grätzel M (2006) Appl Phys Lett 89:183510Google Scholar
  87. 87.
    Kabra D, Lu LP, Song MH, Snaith HJ, Friend RH (2010) Adv Mater 22:3194PubMedGoogle Scholar
  88. 88.
    Wu W-C, Lee W-Y, Chen W-C (2006) Macromol Chem Phys 207:1131Google Scholar
  89. 89.
    Wu W-C, Liu C-L, Chen W-C (2006) Polymer 47:527Google Scholar
  90. 90.
    Pasini M, Giovanella U, Betti P, Bolognesi A, Botta C, Destri S, Porzio W (2009) ChemPhysChem 10:2143PubMedGoogle Scholar
  91. 91.
    Hung M-C, Liao J-L, Chen S-A, Chen S-H, Su A-C (2005) J Am Chem Soc 127:14576PubMedGoogle Scholar
  92. 92.
    Sung H-H, Lin H-C (2004) Macromolecules 37(21):7945Google Scholar
  93. 93.
    Lu S, Liu T, Ke L, Ma D-G, Chua S-J, Huang W (2005) Macromolecules 38:8494Google Scholar
  94. 94.
    Giovanella U, Betti P, Botta C, Destri S, Moreau J, Pasini M, Porzio W, Vercelli B, Bolognesi A (2010) Chem Mater 23(3):810Google Scholar
  95. 95.
    Li J, Liu D (2009) J Mater Chem 19:7584Google Scholar
  96. 96.
    Burn PL, Lo S-C, Samuel IDW (2007) Adv Mater 19:1675Google Scholar
  97. 97.
    Li J, Li Q, Liu D (2011) ACS Appl Mater Interfaces 3:2099PubMedGoogle Scholar
  98. 98.
    King KA, Spellane PJ, Watts RJ (1985) J Am Chem Soc 107:1431Google Scholar
  99. 99.
    Su S-J, Gonmori E, Sasabe H, Kido J (2008) Adv Mater 20:4189Google Scholar
  100. 100.
    Zhen Y, Eom S-H, Chopra N, Lee J, So F, Xue J (2008) Appl Phys Lett 92:223301Google Scholar
  101. 101.
    Xu M, Zhou R, Wang G, Xiao Q, Du W, Che G (2008) Inorg Chim Acta 361:2407Google Scholar
  102. 102.
    Ragni R, Plummer EA, Brunner K, Hofstraat JW, Babudri F, Farinola GM, Naso F, De Cola L (2006) J Mater Chem 16:1161Google Scholar
  103. 103.
    Lee SJ, Park K-M, Yang K, Kang Y (2009) Inorg Chem 48:1030PubMedGoogle Scholar
  104. 104.
    Hang X-C, Fleetham T, Turner E, Brooks J, Li J (2013) Angew Chem Int Ed 52:6753Google Scholar
  105. 105.
    Fukase A, Dao KLT, Kido J (2002) Polym Adv Technol 13:601Google Scholar
  106. 106.
    Rehmann N, Hertel D, Meerholz K, Becker H, Heun S (2007) Appl Phys Lett 91:103507Google Scholar
  107. 107.
    Lamansky S, Djurovich P, Murphy D, Razzaq FA, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304PubMedGoogle Scholar
  108. 108.
    Zhao WQ, Ran GZ, Liu ZW, Bian ZQ, Sun K, Xu WJ, Huang CH, Qin GG (2008) Opt Express 16:5158PubMedGoogle Scholar
  109. 109.
    Cocchi M, Virgili D, Fattori V, Rochester DL, Williams JAG (2007) Adv Funct Mater 17:285Google Scholar
  110. 110.
    Ho C-L, Li H, Wong W-Y (2014) J Organomet Chem 751:261Google Scholar
  111. 111.
    Freund C, Porzio W, Giovanella U, Vignali F, Pasini M, Destri S, Mech A, Di Pietro S, Di Bari L, Mineo P (2011) Inorg Chem 50(12):5417PubMedGoogle Scholar
  112. 112.
    Zhou G-J, Wong W-Y, Yao B, Xie Z, Wang L (2007) Angew Chem Int Ed 46:1149Google Scholar
  113. 113.
    Chang Y-L, Puzzo DP, Wang Z, Helander MG, Qiu J, Castrucci J, Lu Z-H (2012) Phys Status Solidi C 9:2537Google Scholar
  114. 114.
    Wu F-I, Su H-J, Shu C-F, Luo L, Diau W-G, Cheng C-H, Duan J-P, Lee G-H (2005) J Mater Chem 15:1035Google Scholar
  115. 115.
    Ho C-L, Chi L-C, Hung W-Y, Chen W-J, Lin Y-C, Wu H, Mondal E, Zhou G-J, Wong K-T, Wong W-Y (2012) J Mater Chem 22:215Google Scholar
  116. 116.
    Xia ZY, Xiao X, Su JH, Chang CS, Chen CH, Li DL, Tian H (2009) Synth Met 159:1782Google Scholar
  117. 117.
    Hu Z, Wang Y, Shi D, Tan H, Li X, Wang L, Zhu W, Cao Y (2010) Dyes Pigment 86:166Google Scholar
  118. 118.
    Fukagawa H, Shimizu T, Hanashima H, Osada Y, Suzuki M, Fujikake H (2012) Adv Mater 24:5099PubMedGoogle Scholar
  119. 119.
    Jou J-H, Sun M-C, Chou H-H, Li C-H (2005) Appl Phys Lett 87:043508Google Scholar
  120. 120.
    Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Adv Mater 23:926PubMedGoogle Scholar
  121. 121.
    Watanabe K, Kanai D, Tsuzuki T, Takanaga E, Tokito S (2007) J Photopolym Sci Technol 20:39Google Scholar
  122. 122.
    Wu M-F, Yeh S-J, Chen C-T, Murayama H, Tsuboi T, Li W-S, Chao I, Liu S-W, Wang J-K (2007) Adv Funct Mater 17:18879Google Scholar
  123. 123.
    Ye T, Shao S, Chen J, Wang L, Ma D (2011) ACS Appl Mater Interface 3:410Google Scholar
  124. 124.
    Jiang W, Duan L, Qiao J, Zhang D, Dong G, Wang L, Qiu Y (2010) J Mater Chem 20:6131Google Scholar
  125. 125.
    Yang XH, Jaiser F, Klinger S, Neher D (2006) Appl Phys Lett 88:02110Google Scholar
  126. 126.
    Tao Y, Yang C, Qin J (2011) Chem Soc Rev 40:2943PubMedGoogle Scholar
  127. 127.
    Burrows PE, Padmaperuma AB, Sapochak LS, Djurovich P, Thompson ME (2006) Appl Phys Lett 88:183503Google Scholar
  128. 128.
    Jeon SO, Yook KS, Joo CW, Lee JY (2009) Appl Phys Lett 94:013301Google Scholar
  129. 129.
    Yook KS, Lee JY (2014) Adv Mater 26:4218PubMedGoogle Scholar
  130. 130.
    Jeon SO, Lee JY (2012) J Mater Chem 22:4233Google Scholar
  131. 131.
    Su S-J, Sasabe H, Takeda T, Kido J (2008) Chem Mater 20:1691Google Scholar
  132. 132.
    Kim H, Byun Y, Das RR, Choi BK, Ahn PS (2007) Appl Phys Lett 91:093512Google Scholar
  133. 133.
    Cai M, Xiao T, Hellerich E, Chen Y, Shinar R, Shinar J (2011) Adv Mater 23:3590PubMedGoogle Scholar
  134. 134.
    Jankus V, Monkman AP (2011) Adv Funct Mater 21:3350–3356Google Scholar
  135. 135.
    Ahmed E, Earmme T, Jenekhe SA (2011) Adv Funct Mater 21:3889Google Scholar
  136. 136.
    Yang X, Neher D, Hertel D, Däubler TK (2004) Adv Mater 16:161Google Scholar
  137. 137.
    Méhes G, Nomura H, Zhang Q, Nakagawa T, Adachi C (2012) Angew Chem Int Ed 51:11311Google Scholar
  138. 138.
    Lee SY, Yasuda T, Nomura H, Adachi C (2012) Appl Phys Lett 101:093306Google Scholar
  139. 139.
    Nakagawa T, Ku S-Y, Wong K-T, Adachi C (2012) Chem Commun 9580Google Scholar
  140. 140.
    Nakanotani H, Masui K, Nishide J, Shibata T, Adachi C (2013) Sci Rep 3:2127PubMedPubMedCentralGoogle Scholar
  141. 141.
    Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C (2012) J Am Chem Soc 134:14706PubMedGoogle Scholar
  142. 142.
    Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C (2013) Adv Mater 25:3319PubMedGoogle Scholar
  143. 143.
    Lee SY, Yasuda T, Yang YS, Zhang Q, Adachi C (2014) Angew Chem Int Edn 53:6402Google Scholar
  144. 144.
    Kawano K, Nagayoshi K, Yamaki T, Adachi C (2014) Org Electron 15:1695Google Scholar
  145. 145.
    Wang H, Xie L, Peng Q, Meng L, Wang Y, Yi Y, Wang P (2014) Adv Mater 26:5198PubMedGoogle Scholar
  146. 146.
    Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA (2004) Chem Mater 16:4556Google Scholar
  147. 147.
    Hughes G, Bryce MR (2005) J Mater Chem 15:94Google Scholar
  148. 148.
    Jeon SO, Jang SE, Son HS, Lee JY (2011) Adv Mater 23:1436PubMedGoogle Scholar
  149. 149.
    Yook KS, Lee JY (2011) Org Electron 12:1293Google Scholar
  150. 150.
    Xiao L, Su S-J, Agata Y, Lan H, Kido J (2009) Adv Mater 21:1271Google Scholar
  151. 151.
    Tanaka D, Agata Y, Takeda T, Watanabe S, Kido J (2007) Jpn J Appl Phys 46:L117Google Scholar
  152. 152.
    Liu B, Bazan GC (2012) Conjugated polyelectrolytes: fundamentals and applications. Wiley-VCH, Weinheim, ISBN: 978-3-527-33143-7Google Scholar
  153. 153.
    Lee BH, Jung IH, Woo HY, Shim H-K, Kim G, Lee K (2014) Adv Funct Mater 24:1100 (and ref therein)Google Scholar
  154. 154.
    Hu Z, Zhang K, Huang F, Cao Y (2015) Chem Commun 51:5572Google Scholar
  155. 155.
    Hofmann S, Thomschke M, Lüssem B, Leo K (2011) Opt Express 19(s6):A1250PubMedGoogle Scholar
  156. 156.
    Tyan Y-S, Photonics J (2011) Energy 1:011009Google Scholar
  157. 157.
    Thejo Kalyani N, Dhoble SJ (2012) Renew Sustain Energy Rev 16:2696Google Scholar
  158. 158.
    Chiba T, Pu Y-J, Kido J (2015) Adv Mater 27:4681PubMedGoogle Scholar
  159. 159.
    Yu L, Liu J, Hu S, He R, Yang W, Wu H, Peng J, Xia R, Bradley DDC (2013) Adv Funct Mater 23:4366Google Scholar
  160. 160.
    Zhang B, Tan G, Lam C-S, Yao B, Ho C-L, Liu L, Xie Z, Wong W-Y, Ding J, Wang L (2012) Adv Mater 24:1873PubMedGoogle Scholar
  161. 161.
    Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C, Kido J (2010) Adv Mater 22:5003PubMedGoogle Scholar
  162. 162.
    Tu GL, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2004) Appl Phys Lett 85:2172Google Scholar
  163. 163.
    Liu J, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing XB, Wang FS (2006) Adv Funct Mater 16:957Google Scholar
  164. 164.
    Shao S, Ding J, Wang L, Jing X, Wang F (2012) J Am Chem Soc 134:20290PubMedGoogle Scholar
  165. 165.
    Cocchi M, Kalinowski J, Murphy L, Williams JAG, Fattori V (2010) Org Electron 11:388Google Scholar
  166. 166.
    Nishide J, Nakanotani H, Hiraga Y, Adachi C (2014) Appl Phys Lett 104:233304Google Scholar
  167. 167.
    Higuchi T, Nakanotani H, Adachi C (2015) Adv Mater 27:2019Google Scholar
  168. 168.
    Aizawa N, Pu Y-J, Watanabe M, Chiba T, Ideta K, Toyota N, Igarashi M, Suzuri Y, Sasabe H, Kido J (2014) Nat Commun 5:5756Google Scholar
  169. 169.
    Gather MC, Rein S (2015) J Photon Energy 5:057607–1Google Scholar
  170. 170.
    Yabu H, Shimomura M (2005) Langmuir 21:1709PubMedGoogle Scholar
  171. 171.
    Galeotti F, Mróz W, Scavia G, Botta C (2013) Org El 14:212Google Scholar
  172. 172.
    Ou Q-D, Zhou L, Li Y-Q, Shen S, Chen J-D, Li C, Wang Q-K, Lee S-T, Tang J-X (2014) Adv Funct Mater 24:7249Google Scholar
  173. 173.
    Duan L, Zhang D, Wu K, Huang X, Wang L, Qiu Y (2011) Adv Funct Mater 21:3540Google Scholar
  174. 174.
    Ye E, Chee PL, Prasad A, Fang X, Owh C, Jing Jing Yeo V, Jun Loh X (2014) Mater Today 17:194–202Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Umberto Giovanella
    • 1
    Email author
  • Mariacecilia Pasini
    • 1
  • Chiara Botta
    • 1
  1. 1.Istituto per lo Studio delle Macromolecole (ISMAC), CNRMilanItaly

Personalised recommendations