Solar Energy Conversion in Photoelectrochemical Systems

  • Stefano CaramoriEmail author
  • Federico Ronconi
  • Roberto Argazzi
  • Stefano Carli
  • Rita Boaretto
  • Eva Busatto
  • Carlo Alberto Bignozzi
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)


The organization of photoresponsive molecular systems and nano-materials on semiconductor surface holds great potential in the building of solar energy conversion devices where efficient energy conversion results from the optimized cooperation of several subsystems (semiconductor, dye sensitizers, redox mediator, hole transport medium), whose properties can be finely tuned through rational synthetic design. This chapter will review the fundamentals of semiconductor sensitization, a process relying on the quenching by charge transfer of molecular excited states coupled to semiconductor surfaces, and will move on by describing the structural and electronic properties of some of the most successful dye designs, used in conjunction with new electron transfer mediators in liquid electrolytes. From liquid electrolytes, a step forward is made by developing solid state hole conductors, which found their best employment in hybrid junctions with organo-halide lead perovskites, representing, at present, the most promising materials for solar-to-electric power conversion in mesoscopic solar cells. Finally, one of the most challenging tasks which can find solution by exploiting molecular level sensitized materials is discussed in detail through meaningful case studies: the production of solar fuels by photoelectrochemical water splitting.


Solar Cell Atomic Layer Deposition Power Conversion Efficiency Electron Injection Electron Transfer Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tan MX, Laibnis PE, Nguyen ST, Kesselman JM, Stanton CE, Lewis NS (1994) Progress in inorganic chemistry, vol 41. Wiley, New York, pp 21–144Google Scholar
  2. 2.
    Gerischer H (1980) Pure Appl Chem 52:2649–2667CrossRefGoogle Scholar
  3. 3.
    Hannay NB (1959) Semiconductors. Reinhold Publishing Corporation, New YorkGoogle Scholar
  4. 4.
    Becquerel E (1839) Compt Rendus 9:561–567Google Scholar
  5. 5.
    Desilvestro J, Grätzel M, Kavan L, Moser J, Augustynski J (1985) J Am Chem Soc 107:2988–2990Google Scholar
  6. 6.
    O’Regan B, Grätzel M (1991) Nature 353:737–740Google Scholar
  7. 7.
    Gerischer H, Tributsch H (1968) Ber Bunsenges Phys Chem 72:437–445Google Scholar
  8. 8.
    Memming R (1984) Prog Surf Sci 17:7–73CrossRefGoogle Scholar
  9. 9.
    Grätzel M (2005) Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  10. 10.
    Wenger B, Grätzel M, Moser J-E (2005) J Am Chem Soc 127:12150–12151CrossRefGoogle Scholar
  11. 11.
    Moser JE, Grätzel M (1993) Chem Phys 176:493–500CrossRefGoogle Scholar
  12. 12.
    Bauer C, Boschloo G, Mukhtar E, Hagfeldt A (2002) J Phys Chem B 106:12693–12704CrossRefGoogle Scholar
  13. 13.
    Gardner JM, Giaimuccio JM, Meyer GJ (2008) J Am Chem Soc 130:17252–17253CrossRefGoogle Scholar
  14. 14.
    Marton A, Clark CC, Srinivasan R, Freundlich RE, Narducci-Sarjeant, Meyer GJ (2006) Inorg Chem 45:362–369CrossRefGoogle Scholar
  15. 15.
    Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Chem Commun 51:15894–15897Google Scholar
  16. 16.
    Argazzi R, Bignozzi CA, Heimer TA, Castellano FN, Meyer GJ (1995) J Am Chem Soc 117:11815–11816CrossRefGoogle Scholar
  17. 17.
    Wang Q, Moser J-E, Grätzel M (2005) J Phys Chem B 109:14945–14953CrossRefGoogle Scholar
  18. 18.
    Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Sol Energy Mater Sol Cells 87:117–131CrossRefGoogle Scholar
  19. 19.
    Hardin BE, Snaith HJ, McGehee MD (2012) Nat Photonics 6:162–169CrossRefGoogle Scholar
  20. 20.
    Calogero G, Di Marco G, Caramori S, Cazzanti S, Argazzi R, Bignozzi CA (2009) Energy Environ Sci 2:1162–1172CrossRefGoogle Scholar
  21. 21.
    Calogero G, Yum J-H, Sinopoli A, Di Marco G, Grätzel M, Nazeeruddin MK (2012) Sol Energy 86:1563–1575CrossRefGoogle Scholar
  22. 22.
    Fantacci S, De Angelis F (2011) Coord Chem Rev 255:2704–2726CrossRefGoogle Scholar
  23. 23.
    O’Regan BC, Durrant JR (2009) Acc Chem Res 42:1799–1808CrossRefGoogle Scholar
  24. 24.
    Imahori H, Umeyama T, Ito S (2009) Acc Chem Res 42:1809–1818CrossRefGoogle Scholar
  25. 25.
    Cid J-J, Yum J-H, Jang S-R, Nazeeruddin MK, Martínez-Ferrero E, Palomares E, Ko J, Grätzel M, Torres T (2007) Angew Chem Int Ed 46:8358–8362CrossRefGoogle Scholar
  26. 26.
    Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613–1624CrossRefGoogle Scholar
  27. 27.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Science 334:629–634CrossRefGoogle Scholar
  28. 28.
    Odobel F, Le Pleux L, Pellegrin Y, Blart E (2010) Acc Chem Res 43:1063–1071CrossRefGoogle Scholar
  29. 29.
    Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarström L (2012) Coord Chem Rev 256:2414–2423CrossRefGoogle Scholar
  30. 30.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382–6390Google Scholar
  31. 31.
    Hagfeldt A, Grätzel M (1995) Chem Rev 95:49–68Google Scholar
  32. 32.
    Argazzi R, Murakami Iha NY, Zabri H, Odobel F, Bignozzi CA (2004) Coord Chem Rev 248:1299–1316CrossRefGoogle Scholar
  33. 33.
    Nazeeruddin MK, Zakeeruddin SM, Lagref JJ, Liska P, Comte P, Barolo C, Viscardi G, Schenk K, Grätzel M (2004) Coord Chem Rev 248:1317–1328Google Scholar
  34. 34.
    Polo AS, Itokazu MK, Murakami Iha NY (2004) Coord Chem Rev 248:1343–1361CrossRefGoogle Scholar
  35. 35.
    Meyer GJ (2005) Inorg Chem 44:6852–6864CrossRefGoogle Scholar
  36. 36.
    Robertson N (2006) Angew Chem Int Ed 45:2338–2345CrossRefGoogle Scholar
  37. 37.
    Xie P, Guo F (2007) Curr Org Chem 11:1272–1286CrossRefGoogle Scholar
  38. 38.
    Cecchet F, Gioacchini AM, Marcaccio M, Paolucci F, Roffia S, Alebbi M, Bignozzi CA (2002) J Phys Chem B 106:3926–3932CrossRefGoogle Scholar
  39. 39.
    Nour-Mohhamadi F, Nguyen SD, Boschloo G, Hagfeldt A, Lund T (2005) J Phys Chem B 109:22413–22419CrossRefGoogle Scholar
  40. 40.
    Nguyen HT, Ta HM, Lund T (2007) Sol Energy Mater Sol Cells 91:1934–1942CrossRefGoogle Scholar
  41. 41.
    Agresti A, Pescetelli S, Quatela A, Mastroianni S, Brown TM, Reale A, Bignozzi CA, Caramori S, Di Carlo A (2014) RSC Adv 4:12366–12375CrossRefGoogle Scholar
  42. 42.
    Harikisun R, Desilvestro H (2011) Sol Energy 85:1179–1188CrossRefGoogle Scholar
  43. 43.
    Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer C-H, Grätzel M (1999) Inorg Chem 38:6298–6305Google Scholar
  44. 44.
    Islam A, Sugihara H, Yanagida M, Hara K, Fujihashi G, Tachibana Y, Katoh R, Murata S, Arakawa H (2002) N J Chem 26:966–968CrossRefGoogle Scholar
  45. 45.
    Bomben PG, Robson KCD, Koivisto BD, Berlinguette CP (2012) Coord Chem Rev 256:1438–1450CrossRefGoogle Scholar
  46. 46.
    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) J Am Chem Soc 131:5930–5934CrossRefGoogle Scholar
  47. 47.
    Kinoshita T, Dy JT, Uchida S, Kubo T, Segawa H (2013) Nat Photonics 7:535–539CrossRefGoogle Scholar
  48. 48.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663CrossRefGoogle Scholar
  49. 49.
    Ooyama Y, Harima Y (2009) Eur J Org Chem 2009:2903–2934CrossRefGoogle Scholar
  50. 50.
    Hara K, Kurashige M, Ito S, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Chem Commun 252–253Google Scholar
  51. 51.
    Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Chem Mater 16:1806–1812CrossRefGoogle Scholar
  52. 52.
    Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) Chem Commun 569–570Google Scholar
  53. 53.
    Sayama K, Tsukagoshi S, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2002) J Phys Chem B 106:1363–1371CrossRefGoogle Scholar
  54. 54.
    Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser J-E, Humphry-Baker R, Zakeeruddin SM, Grätzel M, Bäuerle P (2012) Adv Funct Mater 22:1291–1302CrossRefGoogle Scholar
  55. 55.
    Do K, Kim D, Cho N, Paek S, Song K, Ko J (2012) Org Lett 14:222–225CrossRefGoogle Scholar
  56. 56.
    Choi H, Baik KC, Kang SO, Ko J, Kang M-S, Nazeeruddin MK, Grätzel M (2008) Angew Chem Int Ed 47:327–330Google Scholar
  57. 57.
    Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Pechy P, Takata M, Miura H, Uchida S, Grätzel M (2006) Adv Mater 18:1202–1205Google Scholar
  58. 58.
    Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Grätzel M (2008) Chem Commun 5194–5196Google Scholar
  59. 59.
    Wu S-L, Lu H-P, Yu H-T, Chuang S-H, Chiu C-L, Lee C-W, Diau EW-G, Yeh C-Y (2010) Energy Environ Sci 3:949–955Google Scholar
  60. 60.
    Lee C-W, Lu H-P, Lan C-M, Huang Y-L, Liang Y-R, Yen W-N, Liu Y-C, Lin Y-S, Diau EW-G, Yeh C-Y (2009) Chem Eur J 15:1403–1412CrossRefGoogle Scholar
  61. 61.
    Di Carlo G, Caramori S, Trifilletti V, Giannuzzi R, De Marco L, Pizzotti M, Orbelli Biroli A, Tessore F, Argazzi R, Bignozzi CA (2014) ACS Appl Mater Interf 6:15841–15852CrossRefGoogle Scholar
  62. 62.
    Barea EM, Gónzalez-Pedro V, Ripollés-Sanchis T, Wu H-P, Li L-L, Yeh C-Y, Diau EW-G, Bisquert J (2011) J Phys Chem C 115:10898–10902CrossRefGoogle Scholar
  63. 63.
    Gregg BA, Pichot F, Ferrere S, Fields CL (2001) J Phys Chem B 105:1422–1429CrossRefGoogle Scholar
  64. 64.
    Gregg BA (2004) Coord Chem Rev 248:1215–1224CrossRefGoogle Scholar
  65. 65.
    Pichot F, Gregg BA (2000) J Phys Chem B 104:6–10CrossRefGoogle Scholar
  66. 66.
    Heimer TA, Heilweil EJ, Bignozzi CA, Meyer GJ (2000) J Phys Chem A 104:4256–4262CrossRefGoogle Scholar
  67. 67.
    Montanari I, Nelson J, Durrant JR (2002) J Phys Chem B 106:12203–12210CrossRefGoogle Scholar
  68. 68.
    Schlichthörl G, Huang SY, Sprague J, Frank AJ (1997) J Phys Chem B 101:8141–8155CrossRefGoogle Scholar
  69. 69.
    Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ (1997) J Phys Chem B 101:2576–2582CrossRefGoogle Scholar
  70. 70.
    Okada K, Matsui H, Kawashima T, Ezure T, Tanabe N (2004) J Photochem Photobiol Part A: Chem 164:193–198CrossRefGoogle Scholar
  71. 71.
    Hanke KP (1999) Z Phys Chem 212:1CrossRefGoogle Scholar
  72. 72.
    Meyer TJ, Taube H (1987) In: Wilkinson G (ed) Comprehensive coordination chemistry: the synthesis, reactions, properties and applications of coordination compounds, vol 1. Pergamon Press, Oxford, p 331Google Scholar
  73. 73.
    Nusbaumer H, Moser J-E, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2001) J Phys Chem B 105:10461–10464CrossRefGoogle Scholar
  74. 74.
    Sapp SA, Elliott CM, Contado C, Caramori S, Bignozzi CA (2002) J Am Chem Soc 124:11215–11222CrossRefGoogle Scholar
  75. 75.
    Ghamouss F, Pitson R, Odobel F, Boujtita M, Caramori S, Bignozzi CA (2010) Electrochim Acta 55:6517–6522CrossRefGoogle Scholar
  76. 76.
    Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Giménez S (2009) J Phys Chem C 113:17278–17290CrossRefGoogle Scholar
  77. 77.
    Wang P, Zakeeruddin SM, Comte P, Charvet R, Humphry-Baker R, Grätzel M (2003) J Phys Chem B 107:14336–14341CrossRefGoogle Scholar
  78. 78.
    Klein C, Nazeeruddin MK, Di Censo D, Liska P, Grätzel M (2004) Inorg Chem 43:4216–4226CrossRefGoogle Scholar
  79. 79.
    Carli S, Casarin L, Caramori S, Boaretto R, Busatto E, Argazzi R, Bignozzi CA (2014) Polyhedron 82:173–180CrossRefGoogle Scholar
  80. 80.
    Liberatore M, Burtone L, Brown TM, Reale A, Di Carlo A, Decker F, Caramori S, Bignozzi CA (2009) Appl Phys Lett 94:173113CrossRefGoogle Scholar
  81. 81.
    Nelson JJ, Amick TJ, Elliott CM (2008) J Phys Chem C 112:18255–18263CrossRefGoogle Scholar
  82. 82.
    Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A (2010) J Am Chem Soc 132:16714–16724CrossRefGoogle Scholar
  83. 83.
    Tsao HN, Yi C, Moehl T, Yum J-H, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2011) ChemSusChem 4:591–594CrossRefGoogle Scholar
  84. 84.
    Yum J-H, Baranoff E, Kessler T, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser JE, Yi C, Nazeeruddin MK, Grätzel M (2012) Nat Commun 3:1–8, Article number 631Google Scholar
  85. 85.
    Hattori S, Wada Y, Yanagida S, Fukuzumi S (2005) J Am Chem Soc 127:9648–9654CrossRefGoogle Scholar
  86. 86.
    Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P (2011) Chem Commun 47:4376–4378Google Scholar
  87. 87.
    Li TC, Spokoyny AM, She C, Farha OK, Mirkin CA, Marks TJ, Hupp JT (2010) J Am Chem Soc 132:4580–4582CrossRefGoogle Scholar
  88. 88.
    Daeneke T, Kwon T-H, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) Nat Chem 3:211–215CrossRefGoogle Scholar
  89. 89.
    Zotti G, Schiavon G, Zecchin S, Favretto D (1998) J Electroanal Chem 456:217–221CrossRefGoogle Scholar
  90. 90.
    Hurvois JP, Moinet C (2005) J Organomet Chem 690:1829–1839CrossRefGoogle Scholar
  91. 91.
    Tennakone K, Kumara GRRA, Kumarasinghe AR, Wijayantha KGU, Sirimanne PM (1995) Semicond Sci Technol 10:1689CrossRefGoogle Scholar
  92. 92.
    Kumarasinghe AR, Flavell WR, Thomas AG, Mallick AK, Tsoutsou D, Chatwin C, Rayner S, Kirkham P, Warren S, Patel S, Christian P, O’Brien P, Grätzel M, Hengerer R (2007) J Chem Phys 127:114703CrossRefGoogle Scholar
  93. 93.
    Kumara GRA, Konno A, Shiratsuchi K, Tsukahara J, Tennakone K (2002) Chem Mater 14:954–955CrossRefGoogle Scholar
  94. 94.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Grätzel M (1998) Nature 395:583–585Google Scholar
  95. 95.
    Murakoshi K, Kogure R, Wada Y, Yanagida S (1998) Sol Energy Mater Sol Cells 55:113–125CrossRefGoogle Scholar
  96. 96.
    Kim Y, Sung Y-E, Xia J-B, Lira-Cantu M, Masaki N, Yanagida S (2008) J Photochem Photobiol A Chem 193:77–80CrossRefGoogle Scholar
  97. 97.
    Yang L, Zhang J, Shen Y, Park B-W, Bi D, Häggman L, Johansson EMJ, Boschloo G, Hagfeldt A, Vlachopoulos N, Snedden A, Kloo L, Jarboui A, Chams A, Perruchot C, Jouini M (2013) J Phys Chem Lett 4:4026–4031CrossRefGoogle Scholar
  98. 98.
    Aitola K, Zhang J, Vlachopoulos N, Halme J, Kaskela A, Nasibulin A, Kauppinen E, Boschloo G, Hagfeldt A (2015) J Solid State Electrochem 19:3139–3144 Google Scholar
  99. 99.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) J Am Chem Soc 131:6050–6051CrossRefGoogle Scholar
  100. 100.
    Weber ZD (1978) Naturforsch B 33:1443–1445Google Scholar
  101. 101.
    Mitzi DB, Field CA, Harrison WTA, Guloy AM (1994) Nature 369:467–469Google Scholar
  102. 102.
    Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Prog Photovolt Res Appl 23:1–9CrossRefGoogle Scholar
  103. 103.
    Mitzi DB (1999) Prog Inorg Chem 48:1–121CrossRefGoogle Scholar
  104. 104.
    Shannon RD (1976) Acta Crystallogr Sect A 32:751–767Google Scholar
  105. 105.
    Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Inorg Chem 52:9019–9038CrossRefGoogle Scholar
  106. 106.
    Mitzi DB (2001) J Chem Soc Dalton Trans 1:1–12CrossRefGoogle Scholar
  107. 107.
    Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Science 342:344–347CrossRefGoogle Scholar
  108. 108.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Science 342:341–344Google Scholar
  109. 109.
    Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwak Y, Hodes G, Cahen D (2014) Nano Lett 14:1000–1004CrossRefGoogle Scholar
  110. 110.
    Cheng Z, Lin J (2010) CrystEngComm 12:2646–2662CrossRefGoogle Scholar
  111. 111.
    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N (2003) Solid State Commun 127:619–623CrossRefGoogle Scholar
  112. 112.
    Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Sci Rep 2:1–7Google Scholar
  113. 113.
    Kitazawa N, Watanabe Y, Nakamura Y (2002) J Mater Sci 37:3585–3587CrossRefGoogle Scholar
  114. 114.
    Mosconi E, Grätzel M, Amat A, Nazeeruddin MK, De Angelis F (2013) J Phys Chem 117:13902–13913Google Scholar
  115. 115.
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Nano Lett 13:1764–1769CrossRefGoogle Scholar
  116. 116.
    Im J-H, Chung J, Kim S-J, Park N-G (2012) Nanoscale Res Lett 7:353CrossRefGoogle Scholar
  117. 117.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LB, Snaith HJ (2014) Energy Environ Sci 7:982–988CrossRefGoogle Scholar
  118. 118.
    Kitazawa N, Enomoto K, Aono M, Watanabe Y (2004) J Mater Sci 39:749–751CrossRefGoogle Scholar
  119. 119.
    Era M, Hattori T, Taira T, Tsutsui T (1997) Chem Mater 9:8–10CrossRefGoogle Scholar
  120. 120.
    Liang KN, Mitzi DB, Prikas MT (1998) Chem Mater 10:403–411CrossRefGoogle Scholar
  121. 121.
    Xia YN, Whitesides GM (1998) Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  122. 122.
    Bi D, Häggman L, Boschloo G, Yang L, Johansson EMJ, Hagfeldt A (2013) RSC Adv 3:18762–18766Google Scholar
  123. 123.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Science 338:643–647Google Scholar
  124. 124.
    Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M (2012) J Am Chem Soc 134:17396–17399Google Scholar
  125. 125.
    Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Nature 499:316–320Google Scholar
  126. 126.
    Snaith HJ, Humphry-Baker R, Chen P, Cesar I, Zakeeruddin SM, Grätzel M (2008) Nanotechnology 19:424003CrossRefGoogle Scholar
  127. 127.
    Kyriazi JM, Ding I-K, Marchioro A, Punzi A, Hardin BE, Burkhard GF, Tétreault N, Grätzel M, Moser J-E, McGehee MD (2011) Adv Energy Mater 1:407–414Google Scholar
  128. 128.
    Abrusci A, Ding I-K, Al-Hashimi M, Segal-Peretz T, McGehee MD, Heeney M, Frey GL, Snaith HJ (2011) Energy Environ Sci 4:3051–3058CrossRefGoogle Scholar
  129. 129.
    Ding I-K, Tétreault N, Brillet J, Hardin BE, Smith EH, Rosenthal SJ, Sauvage F, Grätzel M, McGehee MD (2009) Adv Funct Mater 19:2431–2436Google Scholar
  130. 130.
    Docampo P, Hey A, Guldin S, Gunning R, Steiner U, Snaith HJ (2012) Adv Funct Mater 22:5010–5019Google Scholar
  131. 131.
    Snaith HJ (2010) Adv Funct Mater 20:13–19Google Scholar
  132. 132.
    Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014) Nat Photonics 8:489–494CrossRefGoogle Scholar
  133. 133.
    Christians JA, Herrera PAM, Kamat PV (2015) J Am Chem Soc 137:1530–1538CrossRefGoogle Scholar
  134. 134.
    Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, Snaith HJ (2015) J Phys Chem Lett 6:432–437CrossRefGoogle Scholar
  135. 135.
    Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Nano Lett 14:5561–5568CrossRefGoogle Scholar
  136. 136.
    Song W, Chen Z, Brennaman MK, Concepcion JJ, Patrocinio AOT, Iha NYM, Meyer TJ (2011) Pure Appl Chem 83:749–768CrossRefGoogle Scholar
  137. 137.
    Yachandra VK, Sauer K, Klein MP (1996) Chem Rev 96:2927–2950CrossRefGoogle Scholar
  138. 138.
    Renger G, Renger T (2008) Photosynth Res 98:53–80CrossRefGoogle Scholar
  139. 139.
    Meyer TJ, Huynh MHV, Thorp HH (2007) Angew Chem Int Ed 46:5284–5304CrossRefGoogle Scholar
  140. 140.
    McEvoy JP, Brudvig GW (2006) Chem Rev 106:4455–4483CrossRefGoogle Scholar
  141. 141.
    Kern J, Renger G (2007) Photosynth Res 94:183–202CrossRefGoogle Scholar
  142. 142.
    Dau H, Zaharieva I (2009) Acc Chem Res 42:1861–1870CrossRefGoogle Scholar
  143. 143.
    Brudvig GW (2008) Philos Trans R Soc B Biol Sci 363:1211–1219CrossRefGoogle Scholar
  144. 144.
    Barber J, Andersson B (1994) Nature 370:31–34CrossRefGoogle Scholar
  145. 145.
    Barber J (2006) Biochem Soc Trans 34:619–631CrossRefGoogle Scholar
  146. 146.
    Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN (2010) J Mater Res 25:3–16CrossRefGoogle Scholar
  147. 147.
    Hammarström L (2015) Acc Chem Res 48:840–850CrossRefGoogle Scholar
  148. 148.
    Young KJ, Martini LA, Milot RL, Snoeberger RC III, Batista VS, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2012) Coord Chem Rev 256:2503–2520CrossRefGoogle Scholar
  149. 149.
    Youngblood WJ, Lee S-HA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) J Am Chem Soc 131:926–927CrossRefGoogle Scholar
  150. 150.
    Li L, Duan L, Xu Y, Gorlov M, Hagfeldt A, Sun L (2010) Chem Commun 46:7307–7309CrossRefGoogle Scholar
  151. 151.
    Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) J Am Chem Soc 132:2892–2894CrossRefGoogle Scholar
  152. 152.
    Gillaizeau-Gauthier I, Odobel F, Alebbi M, Argazzi R, Costa E, Bignozzi CA, Qu P, Meyer GJ (2001) Inorg Chem 40:6073–6079CrossRefGoogle Scholar
  153. 153.
    Wasielewski MR (1992) Chem Rev 92:435–461CrossRefGoogle Scholar
  154. 154.
    Gould SL, Kodis G, Palacios RE, de la Garza L, Brune A, Gust D, Moore TA, Moore AL (2004) J Phys Chem B 108:10566–10580CrossRefGoogle Scholar
  155. 155.
    Liddell PA, Kuciauskas D, Sumida JP, Nash B, Nguyen D, Moore AL, Moore TA, Gust D (1997) J Am Chem Soc 119:1400–1405CrossRefGoogle Scholar
  156. 156.
    Moore GF, Blakemore JD, Milot RL, Hull JF, Song H-e, Cai L, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2011) Energy Environ Sci 4:2389–2392CrossRefGoogle Scholar
  157. 157.
    Moore GF, Konezny SJ, Song H-e, Milot RL, Blakemore JD, Lee ML, Batista VS, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2012) J Phys Chem C 116:4892–4902CrossRefGoogle Scholar
  158. 158.
    Swierk JR, Méndez-Hernández DD, McCool NS, Liddell P, Terazono Y, Pahk I, Tomlin JJ, Oster NV, Moore TA, Moore AL, Gust D, Mallouk TE (2015) Proc Natl Acad Sci 112:1681–1686CrossRefGoogle Scholar
  159. 159.
    Kärkäs MD, Verho O, Johnston EV, Åkermark B (2014) Chem Rev 114:11863–12001CrossRefGoogle Scholar
  160. 160.
    Blakemore JD, Crabtree RH, Brudvig GW (2015) Chem Rev 115:12974–13005Google Scholar
  161. 161.
    Gersten SW, Samuels GJ, Meyer TJ (1982) J Am Chem Soc 104:4029–4030CrossRefGoogle Scholar
  162. 162.
    Gilbert JA, Eggleston DS, Murphy WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107:3855–3864CrossRefGoogle Scholar
  163. 163.
    Sens C, Romero I, Rodríguez M, Llobet A, Parella T, Benet-Buchholz J (2004) J Am Chem Soc 126:7798–7799CrossRefGoogle Scholar
  164. 164.
    Zong R, Thummel RP (2005) J Am Chem Soc 127:12802–12803CrossRefGoogle Scholar
  165. 165.
    Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) J Am Chem Soc 130:16462–16463CrossRefGoogle Scholar
  166. 166.
    Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Murakami Iha NY, Templeton JL, Meyer TJ (2009) Acc Chem Res 42:1954–1965CrossRefGoogle Scholar
  167. 167.
    Yoshida M, Masaoka S, Sakai K (2009) Chem Lett 38:702–703CrossRefGoogle Scholar
  168. 168.
    Hocking RK, Brimblecombe R, Chang L-Y, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Nat Chem 3:461–466Google Scholar
  169. 169.
    Alibabaei L, Brennaman MK, Norris MR, Kalanyan B, Song W, Losego MD, Concepcion JJ, Binstead RA, Parsons GN, Meyer TJ (2013) Proc Natl Acad Sci 110:20008–20013CrossRefGoogle Scholar
  170. 170.
    Alibabaei L, Sherman BD, Norris MR, Brennaman MK, Meyer TJ (2015) Proc Natl Acad Sci 112:5899–5902CrossRefGoogle Scholar
  171. 171.
    Vannucci AK, Alibabaei L, Losego MD, Concepcion JJ, Kalanyan B, Parsons GN, Meyer TJ (2013) Proc Natl Acad Sci 110:20918–209225CrossRefGoogle Scholar
  172. 172.
    Hanson K, Torelli DA, Vannucci AK, Brennaman MK, Luo H, Alibabaei L, Song W, Ashford DL, Norris MR, Glasson CRK, Concepcion JJ, Meyer TJ (2012) Angew Chem Int Ed 51:12782–12785CrossRefGoogle Scholar
  173. 173.
    Ding X, Gao Y, Zhang L, Yu Z, Liu J, Sun L (2014) ACS Catal 4:2347–2350CrossRefGoogle Scholar
  174. 174.
    Kirner JT, Stracke JJ, Gregg BA, Finke RG (2014) ACS Appl Mater Interf 6:13367–13377CrossRefGoogle Scholar
  175. 175.
    Ronconi F, Syrgiannis Z, Bonasera A, Prato M, Argazzi R, Caramori S, Cristino V, Bignozzi CA (2015) J Am Chem Soc 137:4630–4633CrossRefGoogle Scholar
  176. 176.
    Li F, Fan K, Xu B, Gabrielsson E, Daniel Q, Li L, Sun L (2015) J Am Chem Soc 137:9153–9159CrossRefGoogle Scholar
  177. 177.
    Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130:8570–8571CrossRefGoogle Scholar
  178. 178.
    Yu Z, Li F, Sun L (2015) Energy Environ Sci 8:760–775Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefano Caramori
    • 1
    Email author
  • Federico Ronconi
    • 1
  • Roberto Argazzi
    • 1
  • Stefano Carli
    • 1
  • Rita Boaretto
    • 1
  • Eva Busatto
    • 1
  • Carlo Alberto Bignozzi
    • 1
  1. 1.Department of Chemistry and Pharmaceutical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations