The Effect of Branch Parameter Errors to Voltage Stability Indices

  • Vedran KirincicEmail author
  • Markos Asprou
  • Petros Mavroeidis
  • Elias Kyriakides
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8985)


Errors in the values of network parameters stored in the control center may affect the important application of voltage stability monitoring. This paper investigates the effect of branch parameters errors to voltage stability monitoring, using the state vector obtained by the state estimator. In particular, the state vector is used for calculating a voltage stability index that indicates the most critical branch (the one that first reaches its active power transfer limit). The states of the power system are estimated under various scenarios of possible errors in the reactance of the critical branch and then are used for the calculation of the voltage stability index. The case studies are performed using the IEEE systems with 14 and 39 buses and it is shown that the calculated value of the stability index depends on the error in the branch parameters, the power system structure and the contingency leading to voltage instability.


Voltage stability monitoring Branch parameter error State estimation Synchronized measurement technology Phasor measurement unit Power systems 


  1. 1.
    Novosel, D., Madani, V., Bhargava, B., Khoi, V., Cole, J.: Dawn of the grid synchronization. IEEE Power Energy Mag. 6(1), 49–60 (2008)CrossRefGoogle Scholar
  2. 2.
    Kirschen, D., Bouffard, F.: Keeping the lights on and the information flowing. IEEE Power Energy Mag. 7(1), 50–60 (2009)CrossRefGoogle Scholar
  3. 3.
    Van Cutsem, T., Vournas, C.: Voltage Stability of Electric Power Systems. Kluwer, Norwell (1998)CrossRefGoogle Scholar
  4. 4.
    Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)Google Scholar
  5. 5.
    Diao, R., et al.: Decision tree-based online voltage security assessment using PMU measurements. IEEE Trans. Power Syst. 24(2), 832–839 (2009)CrossRefGoogle Scholar
  6. 6.
    Chakrabarti, S., Jeyasurya, B.: Multicontingency voltage stability monitoring of a power system using an adaptive radial basis function network. Int. J. Electr. Power Energy Syst. 30(1), 1–7 (2008)CrossRefGoogle Scholar
  7. 7.
    Adamiak, M.G., et al.: Wide area protection-technology and infrastructures. IEEE Trans. Power Deliv. 21(2), 601–609 (2006)CrossRefGoogle Scholar
  8. 8.
    Vittal, V., et al.: A tool for on-line stability determination and control for coordinated operations between regional entities using PMUs. PSERC (2008)Google Scholar
  9. 9.
    Wang, Y., Pordanjani, I.R., Li, W., Xu, W., Chen, T., Vaahedi, E., Gurney, J.: Voltage stability monitoring based on the concept of coupled single-port circuit. IEEE Trans. Power Syst. 26(4), 2154–2163 (2011)CrossRefGoogle Scholar
  10. 10.
    Salehi, V., Mohammed, O.: Real-time voltage stability monitoring and evaluation using synchorophasors. In: Proceedings of North American Power Symposium (NAPS) (2011)Google Scholar
  11. 11.
    Kamwa, I., Grondin, R., Hebert, Y.: Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach. IEEE Trans. Power Syst. 16, 136–153 (2001)CrossRefGoogle Scholar
  12. 12.
    Interrante, J., Aggour, K.S.: Applying cluster computing to enable a large-scale smart grid stability monitoring application. In: High Performance Computing and Communication and IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS) (2012)Google Scholar
  13. 13.
    Asprou, M., Kyriakides, E.: Enhancement of hybrid state estimation using pseudo flow measurements. In: Proceedings of IEEE Power and Energy Society General Meeting, pp. 1–7 (2011)Google Scholar
  14. 14.
    Asprou, M., et al.: The use of a PMU-based state estimator for tracking power system dynamics. In: IEEE Power and Energy Society General Meeting (2014)Google Scholar
  15. 15.
    Christie, R.: Power system test archive.
  16. 16.
    Pai, M.A.: Energy Function Analysis for Power System Stability. Kluwer, Boston (1989)CrossRefGoogle Scholar
  17. 17.
    Abur, A., Gomez-Exposito, A.: Power System State Estimation: Theory and Implementation. Springer, New York (2004)CrossRefGoogle Scholar
  18. 18.
    Salehi, V., et al.: Laboratory-based smart power system, part II: control, monitoring, and protection. IEEE Trans. Smart Grid 3(3), 1405–1417 (2012)CrossRefGoogle Scholar
  19. 19.
    Nguegan, Y., et al.: Online monitoring of the electrical power transfer stability and voltage profile stability margins in electric power transmission systems using phasor measurement units data sets. In: Power and Energy Engineering Conference (2009)Google Scholar
  20. 20.
    Nguegan, Y.: Real-time identification and monitoring of the voltage stability margin in electric power transmission systems using synchronized phasor measurements. Ph.D. thesis, Department of Electrical Engineering, Kassel University, Kassel, Germany (2009)Google Scholar
  21. 21.
    Gong, Y., Schulz, N., Guzman, A.: Synchrophasor-based real-time voltage stability index. In: Proceedings of IEEE PES Power Systems Conference and Exposition (PSCE), pp. 1029–1036 (2006)Google Scholar
  22. 22.
    Gong, Y.: Development of an improved on-line voltage stability index using synchronized phasor measurement, Ph.D. thesis, Mississippi State University (2005)Google Scholar
  23. 23.
    PowerWorld corporation.
  24. 24.
    Asprou, M., Kyriakides, E.: Optimal PMU placement for improving hybrid state estimation accuracy. In: IEEE PowerTech, Norway (2011)Google Scholar
  25. 25.
    Chakrabarti, S., Kyriakides, E.: Optimal placement of phasor measurement units for power system observability. IEEE Trans. Power Syst. 23(3), 1433–1440 (2008)CrossRefGoogle Scholar
  26. 26.
    Kusic, G.L., Garrison, D.L.: Measurement of transmission line parameters from SCADA data. IEEE PES Power Syst. Conf. 1, 440–445 (2004)Google Scholar
  27. 27.
    Bockarjova, M., Andersson, G.: Transmission line conductor temperature impact on state estimation accuracy. In: IEEE Power Tech, pp. 701–706 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vedran Kirincic
    • 1
    Email author
  • Markos Asprou
    • 2
  • Petros Mavroeidis
    • 2
  • Elias Kyriakides
    • 2
  1. 1.Faculty of EngineeringUniversity of RijekaRijekaCroatia
  2. 2.KIOS Research Center for Intelligent Systems and Networks and the Department of Electrical and Computer EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations