High-Power Short Pulses Compression: Analysis and Modeling

Chapter

Abstract

The chapter discusses practically realizable algorithms of model synthesis of direct-flow compressors built on the basis of rectangular, circular or coaxial waveguides. Resonance and distributed switches have been designed to ensure effective energy accumulation and release into output waveguides or free space. The authors dwell on peculiarities of radiation of high-power short pulses by simple monopole antennas with coaxial feeding waveguides. They also design a novel phased antenna array, whose each radiating element is an active compressor. Particular attention is given to the study of such physical processes in compressors as energy accumulation, switching from the accumulation mode into the mode of energy release, and radiation of short high-power pulses into free space.

References

  1. 1.
    Sirenko, Y.K., Strom, S., Yashina, N.P.: Modeling and Analysis of Transient Processes in Open Resonant Structures. New Methods and Techniques. Springer, New York (2007)MATHGoogle Scholar
  2. 2.
    Kuzmitchev, I.K., Melezhyk, P.M., Pazynin, V.L., Sirenko, K.Y., Sirenko, Y.K., Shafalyuk, O.S., Velychko, L.G.: Model synthesis of energy compressors. Radiofizika I Elektronika 13(2), 166–172 (2008)Google Scholar
  3. 3.
    Sirenko, K.Y., Sirenko, Y.K.: Exact ‘absorbing’ conditions in the initial boundary value problems of the theory of open waveguide resonators. Comput. Math. Math. Phys. 45(3), 490–506 (2005)MathSciNetMATHGoogle Scholar
  4. 4.
    Sirenko, Y.K., Strom, S. (eds): Modern Theory of Gratings. Resonant Scattering: Analysis Techniques and Phenomena. Springer, New York (2010)Google Scholar
  5. 5.
    Sirenko, K., Pazynin, V., Sirenko, Y., Bagci, H.: An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures. Prog. Electromagn. Res. 111, 331–364 (2011)CrossRefGoogle Scholar
  6. 6.
    Shafalyuk, O., Sirenko, Y., Smith, P.: Simulation and analysis of transient processes in open axially-symmetrical structures: Method of exact absorbing boundary conditions. In: Zhurbenko V. (ed.): Electromagnetic Waves, pp. 99–116. InTech, Rijeka (2011)Google Scholar
  7. 7.
    Kravchenko, V.F., Sirenko, Y.K., Sirenko, K.Y.: Electromagnetic Wave Transformation and Radiation by the Open Resonant Structures. Modelling and Analysis of Transient and Steady-State Processes. Fizmathlit, Moscow (2011). (in Russian)Google Scholar
  8. 8.
    Shafalyuk, O., Smith, P., Velychko, L.: Rigorous substantiation of the method of exact absorbing conditions in time-domain analysis of open electrodynamic structures. Prog. Electromagn. Res. B 41, 231–249 (2012)CrossRefGoogle Scholar
  9. 9.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: the Finite-Difference Time-Domain Method. Artech House, Boston (2000)MATHGoogle Scholar
  10. 10.
    Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)MATHGoogle Scholar
  11. 11.
    Liu, M., Sirenko, K., Bagci, H.: An efficient discontinuous Galerkin finite-element method for highly accurate solution of Maxwell equations. IEEE Trans. Antennas Propag. 60(8), 3992–3998 (2012)Google Scholar
  12. 12.
    Sirenko, Y.K., Velychko, L.G., Erden, F.: Time-domain and frequency-domain methods combined in the study of open resonance structures of complex geometry. Prog. Electromagn. Res. 44, 57–79 (2004)CrossRefGoogle Scholar
  13. 13.
    Velychko, L.G., Sirenko, Y.K., Velychko, O.S.: Time-domain analysis of open resonators. Analytical grounds. Prog. Electromagn. Res. 61, 1–26 (2006)CrossRefGoogle Scholar
  14. 14.
    Velychko, L.G., Sirenko, Y.K.: Controlled changes in spectra of open quasi-optical resonators. Prog. Electromagn. Res. B 16, 85–105 (2009)CrossRefGoogle Scholar
  15. 15.
    Sirenko, K., Pazynin, V., Sirenko, Y., Bagci, H.: Compression and radiation of high-power short radio pulses. I. Energy accumulation in direct-flow waveguide compressors. Prog. Electromagn. Res. 116, 239–270 (2011)CrossRefGoogle Scholar
  16. 16.
    Sirenko, K., Pazynin, V., Sirenko, Y., Bagci, H.: Compression and radiation of high-power short radio pulses. II. A novel antenna array design with combined compressor/radiator elements. Prog. Electromagn. Res. 116, 271–296 (2011)CrossRefGoogle Scholar
  17. 17.
    Tantawi, S.G., Ruth, R.D., Vlieks, A.E., Zolotorev, M.: Active high-power RF pulse compression using optically switched resonant delay lines. IEEE Trans. Microw. Theory Tech. 45(8), 1486–1492 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Artemenko, S.N., Avgustinovich, V.A., Kaminsky, V.L., Chumerin, P.Y., Yushkov, Y.G.: Experemental investigation of a 25-mw microwave (3-cm range) compressor prototype. Tech. Phys. 45(12), 1608–1611 (2000)CrossRefGoogle Scholar
  19. 19.
    Vikharev, A.L., Gorbachev, A.M., Ivanov, O.A., Isaev, V.A., Kuzikov, S.V., Kolysko, A.L., Movshevich, B.Z., Hirshfield, J., Gold, S.H.: Active Bregg compressor of 3-cm wavelength microwave pulses. Radiophys. Quantum Electron. 51(7), 539–555 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Samsonov, S.V., Phelps, A.D.R., Bratman, V.L., Denisov, G.G., Cross, A.W., Ronald, K., He, W., Yin, H.: Compression of frequency-modulated pulses using helically corrugated waveguides and its potential for generating multigigawatt RF radiation. Phys. Rev. Lett. 92(11), 118301-1–118301-4 (2004)Google Scholar
  21. 21.
    Sirenko, Y.K., Yashina, N.P. Time domain theory of open waveguide resonators: canonical problems and a generalized matrix technique. Radio Sci. 38(2), VIC 26-1–VIC 26-12 (2003)Google Scholar
  22. 22.
    Sirenko, K.Y.: Transport operators in the axially-symmetrical problems of the electrodynamics of pulsed waves. Elektromagnitnye Volny I Elektronnye Sistemy, 11(11), 15–26 (2006). (in Russian)Google Scholar
  23. 23.
    Kravchenko, V.F., Sirenko, K.Y., Sirenko, Y.K.: Transport operators and exact absorbing conditions in the plane problems of the electrodynamics of pulsed waves for compact open resonators with the waveguide feeder line. Elektromagnitnye Volny I Elektronnye Sistemy, 14(1), 4–19 (2009). (in Russian)Google Scholar
  24. 24.
    Pazynin, V.L.: Compression of frequency-modulated electromagnetic pulses in sections of regular waveguides. Telecommun. Radio Eng. 71(20), 1833–1857 (2012)CrossRefGoogle Scholar
  25. 25.
    Karmel, P.R., Colef, G.D., Camisa, R.L.: Introduction to Electromagnetic and Microwave Engineering. Wiley, New York (1998)Google Scholar
  26. 26.
    Sirenko, K.Y., Pazynin, V.L.: Axially-symmetrical radiators of pulsed and monochromatic TM 0n- and TM 0n-waves. Uspehi Sovremennoy Radioelektroniki 4, 52–69 (2006). (in Russian)Google Scholar
  27. 27.
    Bossart, R., Brown, P., Mourier, J., Syratchev, I.V., Tanner, L.: High-power microwave pulse compression of klystrons by phase-modulation if high-Q storage cavities. CERN CLIC-Notes, no.592, (2004)Google Scholar
  28. 28.
    Vikharev, A.L., Ivanov, O.A., Gorbachev, A.M., Kuzikov, S.V., Isaev, V.A., Koldanov, V.A., Lobaev, M.A., Hirshfield, J.L., LaPointe, M.A., Nezhevenko, O.A., Gold, S.H., Kinkead, A.K.: Active compression of RF pulses. In: Hirshfield J.L., Petelin M.I. (eds): Quasi-Optical Control of Intense Microwave Transmission, pp. 199–218. Springer, Netherlands (2005)Google Scholar
  29. 29.
    Yushkov, Y.G., Badulin, N.N., Batsula, A.P., Mel’nikov, A.I., Novikov, S.A., Razin, S.V., Shoshin, E.L.: A nanosecond pulse-compression microwave radar. Telecommun. Radio Eng. 54(2), 92–98 (2000)Google Scholar
  30. 30.
    Schamiloglu, E.: High power microwave sources and applications. In: 2004 IEEE MTT-S Digest, pp. 1001–1004 (2004)Google Scholar
  31. 31.
    Benford, J.: Space applications of high-power microwaves. IEEE Trans. Plasma Sci. 36(3), 569–581 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Gaponov-Grekhov, A.V., Granatstein, V.L.: Applications of High-Power Microwaves. Artech House, Boston (1994)Google Scholar
  33. 33.
    Bluhm, H.: Pulsed Power Systems. Principles and Applications. Springer, Berlin (2006)Google Scholar
  34. 34.
    Pazynin, V.L., Sirenko, K.Y.: Transformation of TM 0n- and TM 0n-waves by axially-symmetrical waveguide units. Slot resonances. Elektromagnitnye Volny I Elektronnye Sistemy, 10(10), 21–26 (2005). (in Russian)Google Scholar
  35. 35.
    DeLoach, B.C.: Radial-line coaxial filters in the microwave region. IEEE Trans. Microw. Theory Tech. 11(1), 50–55 (1963)ADSCrossRefGoogle Scholar
  36. 36.
    Sirenko, K.Y.: Slot resonances in axially symmetric radiators of pulse-modulated and monochromatic TM 0n-modes. Telecommun. Radio Eng. 66(1), 9–21 (2007)CrossRefGoogle Scholar
  37. 37.
    Chernobrovkin, R.E., Ivanchenko, I.V., Korolev, A.M., Popenko, N.A., Sirenko, K.Y.: The novel microwave stop-band filter. Active and Passiv. Electron. Compon. 2008(745368) (2008)Google Scholar
  38. 38.
    Shestopalov, V.P., Kirilenko, A.A., Rud’, L.A.: Resonance Wave Scattering. Vol.2. Waveguide Discontinuities. Naukova Dumka, Kiev (1986). (in Russian)Google Scholar
  39. 39.
    Velychko, L.G., Sirenko, Y.K., Vinogradova, E.D.: Analytical grounds for modern theory of two-dimensionally periodic gratings. In: Kishk A. (ed): Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves, pp. 123–158. InTech, Rijeka (2012)Google Scholar
  40. 40.
    Andreev, A.D., Farr, E.G., Schamiloglu, E.: A simplified theory of microwave pulse compression. Circuit and Electromagnetic System Design Notes, no. 57, (2008)Google Scholar
  41. 41.
    Avgustinovich, V.A., Artemenko, S.N., D’yachenko, V.F., Kaminskii, V.L., Novikov, S.A., Yushkov, Yu.G.: A study of the switching of the microwave compressor switch in a circular waveguide. Instrum. Exp. Tech. 52(4), 547–550 (2009)Google Scholar
  42. 42.
    Faillon, G., Durand, A.-J.: Microwave pulse generator incorporating a pulse compressor. U.S. Patent 6768266 (2004)Google Scholar
  43. 43.
    Artemenko, S.N.: Formation of nanosecond RF pulses in an autogenerator by resonance compression of microwave energy. Radiophys. Quantum Electron. 41(7), 616–624 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Farr, E.G., Bowen, L.H., Prather, W.D., Baum, C.E.: Microwave pulse compression experiments at low and high power. Circuit and Electromagnetic System Design Notes, no.63 (2010)Google Scholar
  45. 45.
    Benford, J.: Space applications of high-power microwaves. IEEE Trans. Plasma Sci. 36(3), 569–581 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    Giri, D.V., Tesche, F.M., Baum, C.E.: An overview of high-power electromagnetics (HPEM) radiating and conducting systems. Circuit and Electromagnetic System Design Notes, no.50 (2006)Google Scholar
  47. 47.
    Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, New York (1982)Google Scholar
  48. 48.
    Amitay, N., Galindo, V., Wu, C.P.: Theory and Analysis of Phased Array Antennas. Wiley, New York (1972)Google Scholar
  49. 49.
    Ramp, H.O., Wingrove E.R.: Principles of pulse compression. IRE Trans. Mil. Electron., MIL-5(2), 109–116 (1961)Google Scholar
  50. 50.
    Thor R.C.: A large time-bandwidth product pulse-compression technique. IRE Trans. Mil. Electron. MIL-6(2), 169–173 (1962)Google Scholar
  51. 51.
    Bongianni, W.L., Harrington, J.B.: Ultrawide bandwidth pulse compression in YIG. Proc. IEEE 54(8), 1074–1075 (1966)CrossRefGoogle Scholar
  52. 52.
    Bromley, R.A., Callan, B.E.: Use of a waveguide dispersive line in an f.m. pulse-compression system. Proc. IEEE 114(9), 1213–1218 (1967)Google Scholar
  53. 53.
    Gökgör, H.S., Minakovic, B.: Circular TE 01 periodic waveguide as delay line for pulse compression. Electron. Lett. 7(20), 607–608 (1971)CrossRefGoogle Scholar
  54. 54.
    Shirman, Y.D.: Signal Resolution and Compression. Sovetskoe Radio, Moscow (1974). (in Russian)Google Scholar
  55. 55.
    Thirios, E.C., Kaklamani, D.I., Uzunoglu, N.K.: Pulse compression using a periodically dielectric loaded dispersive waveguide. Prog. Electromag. Res. 48, 301–333 (2004)CrossRefGoogle Scholar
  56. 56.
    McStravick, M., Samsonov, S.V., Ronald, K., Mishakin, S.V., He, W., Denisov, G.G., Whyte, C.G., Bratman, V.L., Cross, A.W., Yong, A.R., Maclnnes, P., Robertson, C.W., Phelps, A.D.R.: Experimental results on microwave pulse compression using helically corrugated waveguide. J. Appl. Phys. 108(5), 054908-1–054908-4 (2010)Google Scholar
  57. 57.
    Burt, G., Samsonov, S.V., Bratman, V.L., Denisov, G.G., Phelps, A.D.R., Ronald, K., He, W., Young, A.R., Cross, A.W., Konoplev, I.V.: Microwave pulse compression using a helically corrugated waveguide. IEEE Trans. Plasma Sci. 33(2), 661–667 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    Bratman, V.L., Denisov, G.G., Samsonov, S.V., Cross, A.W., Ronald, K., Phelps, A.D.R.: A technique of obtaining multigigawatt peak power through compression of microwave pulses radiated by a relativistic BWT in a helically corrugated waveguide. Izvestiya Vuzov. Radiofizika, 50(1), 40–53 (2007). (in Russian)Google Scholar
  59. 59.
    Pazynin, V.L.: On rigorous simulation of FM pulses compression in the hollow regular waveguides. Radiofizika I Elektronika, 17(3), 30–34 (2012). (in Russian)Google Scholar
  60. 60.
    Levin, L.: Theory of Waveguides: Techniques for Solution of Waveguide Problems. Newnes-Butterworths, London (1975)Google Scholar
  61. 61.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego, London (2000)MATHGoogle Scholar
  62. 62.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)MATHGoogle Scholar
  63. 63.
    Marple, S.L.: Digital Spectral Analysis with Applications. Prentice-Hall, New Jersey (1987)Google Scholar
  64. 64.
    Southworth, G.C.: Principles and Application of Waveguide Transmission. D. Van Nostrand Co., New York (1950)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vadym Pazynin
    • 1
  • Kostyantyn Sirenko
    • 2
  • Yuriy Sirenko
    • 1
    • 3
  1. 1.O.Ya. Usikov Institute for Radiophysics and Electronics, National Academy of SciencesKharkivUkraine
  2. 2.King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.L.N. Gumilyov Eurasian National UniversityAstanaRepublic of Kazakhstan

Personalised recommendations