Operator Fresnel Formulas in the Scattering Theory of Waveguide Modes

Chapter

Abstract

A novel formulation of the problem of wave diffraction by abrupt and volume discontinuities in a waveguide is presented in this chapter. In the context of this formulation, the authors succeeded in solving a number of the long-discussed problems concerning mathematical properties of matrix models of the mode-matching technique. In particular, they rigorously justified the possibility to use the truncation technique, unconditionally converging in the norm of a space of infinite sequences, for numerical implementation of the developed matrix models. The operator-matrix analysis of the mode-matching technique has shown that the proposed approach leads to the operator Fresnel formulas, which generalize properly the well-known Fresnel formulas to the scattering operators.

References

  1. 1.
    Fresnel, A.-J.: Mémoire sur la loi des modifications que la réflexion imprime à la lumière polarisée. Annales de chimie et de physique XLVI, 225–264 (1823) (in French)Google Scholar
  2. 2.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  3. 3.
    Mittra, R., Lee, S.: Analitical Techniques in the Theory of Guided Waves. Macmillan, New York (1971)MATHGoogle Scholar
  4. 4.
    Shestopalov, V.P., Scherbak, V.V.: Matrix operators in diffraction problems. Radiophys. Quantum Electron. 11(2), 161–166 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A., Sirenko, Y.K.: Resonance Wave Scattering. Diffraction Gratings, vol. 1. Naukova Dumka, Kiev (1986). (in Russian)Google Scholar
  6. 6.
    Shestopalov, V.P., Kirilenko, A.A., Rud’, L.A.: Resonance Wave Scattering. Waveguide Discontinuities, vol. 2. Naukova Dumka, Kiev (1986) (in Russian)Google Scholar
  7. 7.
    Lytvynenko, L.M., Prosvirnin, S.L.: Spectral Operators of Scattering in the Problems of Diffraction by Planar Screens. Naukova Dumka, Kiev (1984). (in Russian)Google Scholar
  8. 8.
    Azizov, T.Y., Iohvidov, I.S.: Linear Operators in Spaces with Indefinite Metric. Wiley, Chichester (1989)MATHGoogle Scholar
  9. 9.
    Hurd, R.A., Gruenberg, H.: H-plane bifurcation of rectangular waveguides. Can. J. Phys. 32, 694–701 (1954)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Hönl, H., Maue, A.W., Westpfahl, K.: Theorie der Beugung. Springer, Berlin (1961). (in German)Google Scholar
  11. 11.
    Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A.: Matrix Convolution-Type Equations in the Diffraction Theory. Naukova Dumka, Kiev (1984). (in Russian)Google Scholar
  12. 12.
    Hutson, V.C.L., Pym, J.S.: Applications of Functional Analysis and Operator Theory. Academic Press, New York (1980)MATHGoogle Scholar
  13. 13.
    Halmos, P.R.: A Hilbert Space Problem Book. Springer, Berlin (1982)CrossRefMATHGoogle Scholar
  14. 14.
    Weyl, H.: The Classical Groups: Their Invariants and Representations. Princeton University Press, Chichester (1997)MATHGoogle Scholar
  15. 15.
    Collin, R.E.: Field Theory of Guided Waves. Wiley-IEEE Press, New York (1991)MATHGoogle Scholar
  16. 16.
    Petrusenko, I.V., Sirenko, Y.K.: The lost ‘second Lorentz theorem’ in the phasor domain. Telecommun. Radio Eng. 68(7), 555–560 (2009)CrossRefGoogle Scholar
  17. 17.
    Rothwell, E.J., Cloud, M.J.: Electromagnetics. CRC Press, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Brodskii, M.S., Lifshits, M.S.: Spectral analysis of non-self-adjoint operators and intermediate systems. Am. Math. Soc. Trans. 13(2), 265–346 (1960)Google Scholar
  19. 19.
    Lifshits, M.S.: Operators, Oscillations, Waves. Published by American Mathematical Society, Providence (1973)Google Scholar
  20. 20.
    Petrusenko, I.V., Sirenko, Y.K.: Abrupt discontinuities: The reflection operator is a contraction. Telecommun. Radio Eng. 67(19), 1707–1709 (2008)Google Scholar
  21. 21.
    Trénoguine, V.A.: Analyse Fonctionnelle. Editions MIR, Moscou (1985). (in French)Google Scholar
  22. 22.
    Vladimirov, V.S.: Methods of the Theory of Generalized Functions. Taylor & Francis, London (2002)MATHGoogle Scholar
  23. 23.
    Petrusenko, I.V.: Analytic-numerical analysis of waveguide bends. Electromagnetics 24(4), 237–254 (2004)CrossRefGoogle Scholar
  24. 24.
    Petrusenko, I.V., Sirenko, Y.K.: Generalization of the power conservation law for scalar mode-diffraction problems. Telecommun. Radio Eng. 68(16), 1399–1410 (2009)CrossRefGoogle Scholar
  25. 25.
    von Hurwitz, A., von Courant, R.: Allgemeine Funktionentheorie und Elliptische Funktionen. Geometrische Funktionentheorie. Springer, Berlin (1964) (in German)Google Scholar
  26. 26.
    Vinogradov, I.M. (ed.): Encyclopedia of Mathematics. Kluwer, Boston (1995)Google Scholar
  27. 27.
    Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Non-Self-Adjoint Operators. Published by American Mathematical Society, New York (1969)MATHGoogle Scholar
  28. 28.
    Petrusenko, I.V.: Basic properties of the generalized scattering matrix of waveguide transformers. Electromagnetics 26(8), 601–614 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Customs and FinanceDnipropetrovskUkraine
  2. 2.National Academy of SciencesO.Ya. Usikov Institute for Radiophysics and ElectronicsKharkivUkraine
  3. 3.L.N. Gumilyov Eurasian National UniversityAstanaRepublic of Kazakhstan

Personalised recommendations