Dyadic Green’s Function for Biaxial Anisotropic Media

Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 91)


In this chapter, authors construct the dyadic Green’s function for a biaxial anisotropic media. Among the obtained analytical results, worthy of mention are the representation of the singular part of the Green’s function in an explicit form and the representation of its regular part in the form of a relatively simple double integral over a limited region. These results are aimed at developing efficient numerical algorithms and asymptotic representations in the problems of wave scattering in anisotropic media.


Observation Point Radiation Condition Cartesian Coordinate System Anisotropic Medium Regular Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tai, C.T.: Dyadic Green’s Functions in Electromagnetic Theory. IEEE Press, New York (1994)MATHGoogle Scholar
  2. 2.
    Chen, H.C.: Theory of Electromagnetic Waves: A Coordinate-Free Approach. McGraw-Hill, New York (1983)Google Scholar
  3. 3.
    Weiglhofer, W.S.: Dyadic Green’s functions for general uniaxial media. In: IEEE Proceedings–H: Microwaves, Antennas and Propagation, vol. 137, no. 1, pp. 5–10 (1990)Google Scholar
  4. 4.
    Sautbekov, S., Kanymgazieva, I., Frangos, P.: The generalized solutions of Maxwell equation for the uniaxial crystal. J. Appl. Electromagn. 10(2), 43–55 (2008)Google Scholar
  5. 5.
    Cottis, P.G., Kondylis, G.D.: Properties of the dyadic Green’s function for an unbounded anisotropic medium. IEEE Trans. Antennas Propag. 43(2), 154–161 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cottis, P.G., Vazouras, C.N., Spyrou, C.: Green’s function for an unbounded biaxial medium in cylindrical coordinates. IEEE Trans. Antennas Propag. 47(1), 195–199 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Li, K., Park, S.O.: Dyadic Green’s function for an unbounded anisotropic medium in cylindrical coordinates. Prog. Electromagn. Res. 35, 115–125 (2002)CrossRefGoogle Scholar
  8. 8.
    Kaklamani, D.I., Uzunoglu, N.K.: Radiation of a dipole in an infinite triaxial anisotropic medium. Electromagnetics 12(2), 231–245 (1992)CrossRefGoogle Scholar
  9. 9.
    Jakoby, B., Olyslager, F.: Asymptotic expansions for Green’s dyadics in bianisotropic media. Prog. Electromagn. Res. 12, 277–302 (1996)Google Scholar
  10. 10.
    Zhuck, N.P., Omar, A.S.: Radiation and low-frequency scattering of EM waves in a general anisotropic homogeneous medium. IEEE Trans. Antennas Propag. 47(8), 1364–1373 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Potemkin, A.S., Poddubny, A.N., Belov, P.A., Kivshar, Y.S.: Green function for hyperbolic media. Phys. Rev. A 85, 023848 (2012)Google Scholar
  12. 12.
    Vladimirov, V.S.: Equations of Mathematical Physics. Dekker, New York (1971)MATHGoogle Scholar
  13. 13.
    Varshalovich, D.A., Moskalev, A.N., Chersonsky, V.K.: Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols. World Scientific, Singapore (1988)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Leonid Pazynin
    • 1
  • Seil Sautbekov
    • 2
  • Yuriy Sirenko
    • 1
    • 2
  1. 1.O.Ya. Usikov Institute for Radiophysics and Electronics, National Academy of SciencesKharkivUkraine
  2. 2.L.N. Gumilyov Eurasian National UniversityAstanaRepublic of Kazakhstan

Personalised recommendations