New Analytical Solutions of Selected Electromagnetic Problems in Wave Diffraction Theory

Chapter

Abstract

The chapter presents explicit analytical solutions for some sophisticated electromagnetic problems. The analysis of these solutions made it possible, in particular, to explain the physics of a cycle slipping phenomenon when very long electromagnetic waves propagate in the Earth-ionosphere waveguide, to establish the rigorous criterion of the boundary ‘sharpness’ for transient radiation and to show that the well-known negative refraction phenomenon in isotropic double-negative media is a direct consequence of the energy conservation law and Maxwell’s equations.

References

  1. 1.
    Krylov, G.G.: Exactly and Quasi-Exactly Solvable Problems in Quantum Mechanics and Statistical Dynamics. Belarusian State Univ. Press, Minsk (2011). (in Russian)Google Scholar
  2. 2.
    Wiener, N., Hopf, E.: Uber eine klassesingularer integralgleichungen. S.B.Preuss. Akad. Wiss., 696–706 (1931)Google Scholar
  3. 3.
    Copson, E.T.: On an integral equation arising in the theory of diffraction. Q. J. Math. 17, 19–34 (1946)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Carlson, J.F., Heins, A.E.: The reflection of an electromagnetic plane wave by an infinite set of plates. Q. Appl. Math. 4, 313–329 (1947)MathSciNetMATHGoogle Scholar
  5. 5.
    Weinshtein, L.A.: On the reflection of a sound wave from the open end of a tube. Doklady Akademii Nauk SSSR, 58(9), 1957–1960 (1947). (in Russian)Google Scholar
  6. 6.
    Lawrie, J.B., Abrahams, I.D.: A brief historical perspective of the Wiener-Hopf technique. J. Eng. Math. 59(4), 351–358 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gakhov, F.D., Cherskiy, Y.I.: Equations of Convolution Type. Nauka, Moscow (1978). (in Russian)Google Scholar
  8. 8.
    Grinberg, G.A., Fok, V.A.: On the theory of coastal refraction of electromagnetic waves. In: Vvedenskii, B.A. (ed.) Book chapter, Investigations on Propagation of Radio Waves, 69–111. AN SSSR Press, Moscow (1948)Google Scholar
  9. 9.
    Heins, A.E., Feshbach, H.: The coupling of two acoustical ducts. J. Math. Phys. 26, 143–155 (1947)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Talanov, V.I.: About electromagnetic wave diffraction on the jump of surface impedance in a waveguide. Izvestiya Vuzov. Radiofizika, 1(3), 64–72 (1958). (in Russian)Google Scholar
  11. 11.
    Pazynin, L.A.: New exactly solvable problems in the theory of wave propagation near an irregular impedance plane. Telecommun. Radio Eng. 55(10-11), 22–29 (2001)Google Scholar
  12. 12.
    Brekhovskikh, L.M.: Waves in Layered Media. Academic Press, New York (1960)MATHGoogle Scholar
  13. 13.
    Weinshtein, L.A.: The Theory of Diffraction and the Factorization Method. The Golem Press, Boulder (1969)Google Scholar
  14. 14.
    Senior, T.B.A., Volakis, J.L.: Generalized impedance boundary conditions in scattering. Proc. IEEE 79(10), 1413–1420 (1991)CrossRefGoogle Scholar
  15. 15.
    Pazynin, V.L., Pazynin, L.A.: Electromagnetic waves in planar impedance irregular waveguide. Radio Phys. Radio Astron. 4(1), 49–53 (1999). (in Russian)Google Scholar
  16. 16.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego, London (2000)MATHGoogle Scholar
  17. 17.
    Cherskiy, Y.I.: Normally solvable smooth-transition equation. Doklady Akademii Nauk SSSR, 190(1), 57–60 (1970). (in Russian)Google Scholar
  18. 18.
    Shabat, B.V.: Introduction to Complex Analysis. Part II. Functions of Several Variables. American Mathematical Society, Providence, RI (1992)MATHGoogle Scholar
  19. 19.
    Pierce, A.D.: Extension of the method of normal modes to sound propagation in an almost-stratified medium. J. Acoust. Soc. Am. 37, 19–27 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    Makarov, G.I., Novikov, V.V., Rybachek, S.T.: Radiowave Propagation in the Earth-Ionosphere Waveguide and in the Ionosphere. Nauka, Moscow (1994). (in Russian)Google Scholar
  21. 21.
    Krasnushkin, P.Y., Fedorov, Y.N.: About multiplicity of wave numbers of normal modes in stratified media. Radiotekhnika i Elektronika, 17(6), 1129–1140 (1972). (in Russian)Google Scholar
  22. 22.
    Walker, D.: Phase steps and amplitude fading of VLF signals at dawn and dusk. Radio Sci. 69D(11), 1435–1443 (1965)Google Scholar
  23. 23.
    Katsenelenbaum, B.Z., Mercader, R.L., Pereyaslavets, M.M., Sorolla, A.M., Tumm, M.: Theory of Nonuniform Waveguides: the Cross-Section Method. Published by the Institution of Electrical Engineers, London (1998)CrossRefGoogle Scholar
  24. 24.
    Stevenson, A.F.: Exact and approximate equations for wave propagation in acoustic horns. J. Appl. Phys. 22(12), 1461–1463 (1951)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Johler, J.R., Berry, L.A.: Propagation Radio Waves at Frequencies Below 300kc/s. Pergamon Press, Oxford-Paris (1964)Google Scholar
  26. 26.
    Alpert, Y.L., Guseva, E.G., Fligel, D.S.: Propagation of Low-Frequency Electromagnetic Waves in the Earth-Ionosphere Waveguide. Nauka, Moscow (1967). (in Russian)Google Scholar
  27. 27.
    Makarov, G.I., Novikov, V.V., Orlov, A.B.: The current status of research on the VLF propagation in the earth-ionosphere waveguide. Izvestiya Vuzov. Radiofizika, 13(3), 321–355 (1970). (in Russian)Google Scholar
  28. 28.
    Simpson, J.J., Taflove, A.: A review of progress in FDTD Maxwell’s Equations modeling of impulsive subionospheric propagation below 300 kHz. IEEE Trans. Antennas Propag. 55(6), 1582–1590 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Lynn, K.J.W.: Anomalous sunrise effects observed on a long transequatorial VLF propagation path. Radio Sci. 2(6), 521–530 (1967)ADSCrossRefGoogle Scholar
  30. 30.
    Bahar, E., Wait, J.R.: Propagation in a model terrestrial waveguide of nonuniform height: theory and experiment. Radio Sci. 69D(11), 1445–1463 (1965)Google Scholar
  31. 31.
    Wait, J.R.: Mode conversion and refraction effects in the Earth–ionosphere waveguide for VLF radio waves. J. Geophys. Res. 73(11), 3537–3548 (1968)ADSCrossRefGoogle Scholar
  32. 32.
    Bolotovskiy, Y.E., Makarov, G.I.: Intersection of VLF-signal path and the ‘day–night’ boundary. Problems of Diffraction and Wave Propagation, vol.11, pp. 142–158. Leningrad State University. Press (1972). (in Russian)Google Scholar
  33. 33.
    Pappert, R.A., Ferguson, J.A.: VLF/LF mode conversion model calculations for air to air transmissions in the earth-ionosphere waveguide. Radio Sci. 21(4), 551–558 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    Perel, M.V., Stesik, O.L.: Numerical simulation of cycle slipping in diurnal variation of phase of VLF field. Radio Sci. 32(1), 199–217 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    Budden, K.G.: The critical coupling of modes in a tapered earth–ionosphere waveguide. Math. Proc. Cambridge Philos. Soc. 77, 567–580 (1975)ADSCrossRefGoogle Scholar
  36. 36.
    Foley, G., Wang, I.C., Jones, T.B.: Studies of the modal parameters of VLF radiowaves propagated below the night–time ionosphere. J. Atmos. Terr. Phys. 35(12), 2111–2122 (1973)ADSCrossRefGoogle Scholar
  37. 37.
    Pazynin, L.A.: The cycle slipping phenomenon and the degeneration effect of guided-wave modes. Prog. Electromagn. Res. M 6, 75–90 (2009)CrossRefGoogle Scholar
  38. 38.
    Vaganov, R.B., Katsenelenbaum, B.Z.: Foundations of Diffraction Theory. Nauka, Moscow (1982). (in Russian)MATHGoogle Scholar
  39. 39.
    Tyras, G.: Radiation and Propagation of Electromagnetic Waves. Academic Press, New York and London (1969)Google Scholar
  40. 40.
    Valagiannopoulos, C.A.: An overview of the Watson transformation presented through a simple example. Progr. Electromagn. Res. 75, 137–152 (2007)CrossRefGoogle Scholar
  41. 41.
    Felsen, L.B., Marcuvitz, N.: Radiation and Scattering of Waves. Prentice-Hall, Englewood Cliffs, NJ (1973)MATHGoogle Scholar
  42. 42.
    Newton, R.G.: Theory of Waves and Particles. McGraw-Hill, New York (1969)Google Scholar
  43. 43.
    Keller, J.B., Rubinow, S.I., Goldstein, M.: Zeros of Hankel functions and poles of scattering amplitudes. J. Math. Phys. 4(6), 829–832 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Paknys, R.: Evaluation of Hancel functions with complex argument and complex order. IEEE Trans. Antennas Propag. 40(5), 569–578 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    Tian, Y.B., Qian, J.: Ultraconveniently finding multiple solutions of complex transcendental equations based on genetic algorithm. J. Electromagn. Waves Appl. 20(4), 475–488 (2006)CrossRefGoogle Scholar
  46. 46.
    Hanson, G.W., Yakovlev, A.B.: Investigation of mode interaction on planar dielectric waveguides with loss and gain. Radio Sci. 34(6), 1349–1359 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    van der Pol, B.: On discontinuous electromagnetic waves and the occurrence of a surface wave. IRE Tran. Antennas Propag. AP-4, 288–293 (1956)Google Scholar
  48. 48.
    Cagniard, L.: Reflexion et Refraction des Ondes Seismiques Progressives. Gauthier-Villars, Paris (1939)MATHGoogle Scholar
  49. 49.
    Cagniard, L.: Reflection and Refraction of Progressive Seismic Waves. McGraw-Hill, New York (1962)MATHGoogle Scholar
  50. 50.
    de Hoop, A.T.: A modification of Cagniard’s method for solving seismic pulse problems, Appl. Sci. Res. B8, 349–356 (1960)Google Scholar
  51. 51.
    de Hoop, A.T., Frankena, H.J.: Radiation of pulses generated by a vertical electric dipole above a plane, non-conducting Earth. Appl. Sci. Res., B8, 369–377 (1960)Google Scholar
  52. 52.
    Frankena, H.J.: Transient phenomena associated with Sommerfeld’s horizontal dipole problem. Appl. Sci. Res., B8, 357–368 (1960)Google Scholar
  53. 53.
    Langenberg, K.J.: The transient response of a dielectric layer. Appl. Phys. 3(3), 179–188 (1974)ADSCrossRefGoogle Scholar
  54. 54.
    de Hoop, A.T.: Pulsed electromagnetic radiation from a line source in a two-media configuration. Radio Sci. 14(2), 253–268 (1979)ADSCrossRefGoogle Scholar
  55. 55.
    Kooij, B.J.: The transient electromagnetic field of an electric line source above a plane conducting Earth. IEEE Trans. Electromagn. Capab. 33, 19–24 (1991)CrossRefGoogle Scholar
  56. 56.
    Murrell, H.C., Ungar, A.: From Cagniard’s method for solving seismic pulse problems to the method of the differential transform. Comput. Math Appl. 8(2), 103–118 (1982)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Bleistein, N., Cohen, J.K.: An alternative approach to the Cagniard de Hoop method. Geophys. Prospect. 40(6), 619–649 (1991)ADSCrossRefGoogle Scholar
  58. 58.
    Beh-Hador, R., Buchen, P.: A new approach to Cagniard’s problem. Applied Mathematics Letters 12(8), 65–72 (1999)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Pazynin, L.A.: Pulsed radiation from a line electric current near a planar interface: a novel technique. IEEE Trans. Antennas Propag. 59(12), 4733–4739 (2011)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961)MATHGoogle Scholar
  61. 61.
    Mittra, R., Lee, S.W.: Analytical Techniques in the Theory of Guided Waves. Macmillan, New York (1971)MATHGoogle Scholar
  62. 62.
    Friedlander, F.G.: Sound Pulses. Cambridge University. Press, Cambridge (1958)MATHGoogle Scholar
  63. 63.
    Forsythe, G.E., Malcolm, M.A., Moler, C.B.: Computer Methods for Mathematical Computations. Prentice-Hall, Upper Saddle River, NJ (1977)MATHGoogle Scholar
  64. 64.
    Lihh, W., Nam, S.: Time-domain electromagnetic fields radiating along the horizontal interface between vertically uniaxial half-space media. IEEE Trans. Antennas Propag. 55(5), 1305–1317 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    Bass, F.G., Yakovenko, V.M.: Theory of radiation from a charge passing through an electrically inhomogeneous medium. Soviet Physics-Uspekhi 8(3), 420–444 (1965)ADSCrossRefGoogle Scholar
  66. 66.
    Ginzburg, V.L., Tsytovich, V.N.: Several problems of the theory of transition radiation and transition scattering. Phys. Rep. 49(1), 1–89 (1979)ADSCrossRefGoogle Scholar
  67. 67.
    Amatuni, A., Korhmazyan, N.: Transition radiation in the case of a diffuse boundary between two media. Zhurnal Experimental’noy I Teoreticheskoy Fiziki, 39(4,10), 1011–1019 (1960). (in Russian)Google Scholar
  68. 68.
    Pazynin, L.A.: Radiation of the longitudinal magnetic dipole for non-sharp boundary between two media. Radiofizika I Elektronika, 4(2), 14–18 (1999). (in Russian)Google Scholar
  69. 69.
    Ginzburg, V.L., Tsytovich, V.N.: Transition Radiation and Transition Scattering. A Hilger, Bristol, New York (1990)Google Scholar
  70. 70.
    Bateman, H.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York (1953)Google Scholar
  71. 71.
    Lindel, I.V., Sihvola, A.H., Tretyakov, S.A., Viitanen, A.J.: Electromagnetic Waves on Chiral and Bi-Isotropic Media. Artech House, Norwood, MA (1994)Google Scholar
  72. 72.
    Lindel, I.V., Tretykov, S.A., Oksanen, M.I.: Conductor-backed Tellegen slab as twist polarizer. Electron. Lett. 28, 281–282 (1992)ADSCrossRefGoogle Scholar
  73. 73.
    Viitanen, A.J., Lindel, I.V.: Chiral slab polarization transformer for aperture antennas. IEEE Trans. Antennas Propag. 46(9), 1395–1397 (1998)ADSCrossRefGoogle Scholar
  74. 74.
    Silverman, M.P.: Reflection and refraction at the surface of a chiral medium, comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation. J. Opt. Soc. Am. A, 3-A(6), 830–837 (1986)Google Scholar
  75. 75.
    Bassiri, S., Papas, C.H., Engheta, N.: Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab. J. Opt. Soc. Am. A, 5-A(9), 1450–1456 (1988)Google Scholar
  76. 76.
    Lindel, I.V., Viitanen, A.J.: Duality transformations for general bi-isotropic (nonreciprocal chiral) media. IEEE Trans. Antennas Propag. 40(1), 91–95 (1992)ADSCrossRefGoogle Scholar
  77. 77.
    Tretyakov, S.A., Oksanen, M.I.: Vector Circuit Theory for Multilayered Isotropic and Chiral Structures: Reflection and Transmission. Electromagnetics Laboratory Helsinki University of Technology Reports, no. 50 (1989)Google Scholar
  78. 78.
    He, S.: A time-harmonic Green function technique and wave propagation in a stratified nonreciprocal chiral slab with multiple discontinuities. J. Math. Phys. 33(12), 4103–4110 (1992)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    He, S., Hu, Y.: Electromagnetic scattering from a stratified bi-isotropic (nonreciprocal chiral) slab: Numerical computations. IEEE Trans. Antennas Propag. 41(8), 1057–1062 (1993)ADSCrossRefGoogle Scholar
  80. 80.
    Pazynin, L.A.: Electromagnetic wave propagation through a biisotropic transition layer. Radio Physics and Radio Astronomy, 10(3), 284–290 (2005). (in Russian)Google Scholar
  81. 81.
    Bliokh, K.Y., Bliokh, Y.P.: What are the left-handed media and what is interesting about them? Physics-Uspekhi 47(4), 393–400 (2004)ADSCrossRefMATHGoogle Scholar
  82. 82.
    Parkhomenko, M.P., Silin, R.A., Chepurnykh, I.P.: Experimental investigation of quasi-optical characteristics of artificial dielectrics with negative dispersion. Radiotehnika I Elektronika, 49(5), 624–628 (2004). (in Russian)Google Scholar
  83. 83.
    Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)ADSCrossRefGoogle Scholar
  84. 84.
    Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)ADSCrossRefGoogle Scholar
  85. 85.
    Vashkovskii, A.V., Lokk, E.G.: Properties o backward electromagnetic waves and the appearance of negative reflection in ferrite films. Physics-Uspekhi 49(4), 389–399 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    Pazynin, L.A.: Negative reflection in isotropic double-negative media. Elektromagnitnye Volny I Elektronnye Sistemy, 14(9), 45–50 (2009). (in Russian)Google Scholar
  87. 87.
    Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York, London (1953)MATHGoogle Scholar
  88. 88.
    Forsterling, K., Wuster, H.O.: Eutstheung von oberwellen in der ionosphare. J. Atmos. Terr. Phys. 2, 22–31 (1951)ADSCrossRefGoogle Scholar
  89. 89.
    Denisov, N.G.: On a peculiarity of the electromagnetic wave propagating in an inhomogeneous plasma. Zhurnal Experimental’noy I Teoreticheskoy Fiziki 31(4, 10), 609–619 (1956). (in Russian)Google Scholar
  90. 90.
    Ginzburg, V.: The Propagation of Electromangetic Waves in Plasmas. Pregamon, Oxford (1970)Google Scholar
  91. 91.
    Dubinov, A.E., Mytareva, L.A.: Invisible cloaking of material bodies using the wave flow method. Physics-Uspekhi 53(5), 455–479 (2010)ADSCrossRefGoogle Scholar
  92. 92.
    Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  93. 93.
    Leonhardt, U.: Notes on conformal invisibility devices. New J. Phys., 8(118) (2006)Google Scholar
  94. 94.
    Kildishev, A.V., Shalaev, V.M.: Enabling transformation optics through metamaterials. Trans. Opt. Metamaterials. Physics-Uspekhi 54(1), 53–63 (2011)ADSCrossRefGoogle Scholar
  95. 95.
    Chen, H., Wu, B.-I., Zhang, B., et al.: Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett., 99, ID 063903 (2007)Google Scholar
  96. 96.
    Gao, L., Fung, T.H., Yu, K.W. et al.: Electromagnetic transparency by coated spheres with radial anisotropy. Phys. Rev., E78, ID 046609 (2008)Google Scholar
  97. 97.
    Qiu, C.W., Hu, L., Zhang, B., et al.: Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings. Opt. Express 17(16), 13467–13478 (2009)ADSCrossRefGoogle Scholar
  98. 98.
    Meng, F.Y., Liang, Y., Wu, Q., et al.: Invisibility of a metamaterial cloak illuminated by spherical. Appl. Phys. A 95, 881–888 (2009)ADSCrossRefGoogle Scholar
  99. 99.
    Cheng, X.X., Chen, H.S., Zhang, X.M.: Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system. Prog. Electromagn. Res. 100, 285–298 (2010)CrossRefGoogle Scholar
  100. 100.
    Pazynin, L.A.: Distorting coating as an alternative to the masking coating. Fizicheskie Osnovy Priborostroeniya, 2(1), 72–77 (2013). (in Russian)Google Scholar
  101. 101.
    Chen, H.: Transformation optics in orthogonal coordinates. J. Opt. A Pure Appl. Opt. 11, ID 075102 (2009)Google Scholar
  102. 102.
    Varshalovich, D.A., Moskalev, A.N., Chersonsky, V.K.: Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols. World Scienrific, Singapore (1988)CrossRefMATHGoogle Scholar
  103. 103.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)MATHGoogle Scholar
  104. 104.
    Zhu, G.: Scalar theory of electromagnetic wave in a spherically symmetric radially anisotropic and inhomogeneous medium: Photonic atoms. J. Appl. Phys., 108, ID 073118 (2010)Google Scholar
  105. 105.
    Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.F.: Electromagnetic and Acoustic Scattering by Simple Shapes. North-Holland Publishing Company, Amsterdam (1969)Google Scholar
  106. 106.
    Lai, Y., Ng, J., Chen, H. et al.: Illusion optics: The optical transformation of an object into another object. Phys. Rev. Lett. 102, ID 253902 (2009)Google Scholar
  107. 107.
    Pazynin, L.A.: The random analogue of Epstein’s transition layer. Waves in Random Media 7, 545–556 (1997)ADSCrossRefMATHGoogle Scholar
  108. 108.
    Pazynin, L.A.: Radiation of a uniformly moving charge in a nonstationary medium with the dependence of ε −1 (t) as sech2 (t). Elektromagnitnye Volny I Elektronnye Sistemy, 5(3), 70–75 (2000). (in Russian)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.O.Ya. Usikov Institute for Radiophysics and Electronics, National Academy of SciencesKharkivUkraine

Personalised recommendations