Skip to main content

Contrast Media

  • Chapter
  • First Online:
PET-CT and PET-MRI in Neurology

Abstract

Contrast media are pharmaceuticals commonly used to improve the visualization of radiological images. Contrast-enhanced imaging provides, noninvasively, anatomical, functional, and metabolic information on tissues and organs in vivo, offering a powerful tool to investigate both physiological and pathological processes. Particularly for neurology, the development of new contrast media has drastically improved our knowledge of the central nervous system (CNS) and has facilitated the diagnosis of many common brain diseases. In this chapter, we will focus on contrast agents (CAs) for magnetic resonance (MR) and nuclear imaging and their applications in neurology and basic neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASL:

Arterial spin labeling

CEST:

Chemical exchange

CNS:

Central nervous system

CT:

Computed tomography

DCE:

Dynamic contrast enhancement

DOTATOC:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-tyrosine-3-octreotide

DTI:

Diffusion tensor imaging

DTPA:

Diethylene-triamine-pentacetate

DWI:

Diffusion-weighted imaging

FDG:

2-fluoro-2-deoxy-D-glucose

FET:

Fluoroethyl-tyrosine

fMRI:

Functional MRI

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance imaging

PET:

Positron emission tomography

SPECT:

Single-photon emission computed tomography

T1w:

T1 weighted

T2*:

T2 star

T2w:

T2 weighted

FAZA:

Fluoroazomycin-arabinoside

References

  1. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    Article  CAS  PubMed  Google Scholar 

  2. Bauer WM, Fenzl G, Vogl T, Fink U, Lissner J (1988) Indications for the use of Gd-Dtpa in Mri of the central nervous system – experiences in patients with cerebral and spinal-diseases. Invest Radiol 23:S286–S288

    Article  PubMed  Google Scholar 

  3. Aime S, Botta M, Fasano M, Terreno E (1998) Lanthanide(III) chelates for NMR biomedical applications. Chem Soc Rev 27:19–29

    Article  CAS  Google Scholar 

  4. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  CAS  PubMed  Google Scholar 

  5. Idee JM, Port M, Robic C, Medina C, Sabatou M, Corot C (2009) Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging 30:1249–1258

    Article  PubMed  Google Scholar 

  6. Giesel FL, Mehndiratta A, Essig M (2010) High-relaxivity contrast-enhanced magnetic resonance neuroimaging: a review. Eur Radiol 20:2461–2474

    Article  PubMed  Google Scholar 

  7. Bendszus M, Ladewig G, Jestaedt L, Misselwitz B, Solymosi L, Toyka K, Stoll G (2008) Gadofluorine M enhancement allows more sensitive detection of inflammatory CNS lesions than T2-w imaging: a quantitative MRI study. Brain 131:2341–2352

    Article  PubMed  Google Scholar 

  8. Le Duc G, Roux S, Paruta-Tuarez A, Dufort S, Brauer E, Marais A, Truillet C, Sancey L, Perriat P, Lux F, Tillement O (2014) Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnol 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Essig M, Nikolaou K, Meaney JF (2007) Magnetic resonance angiography of the head and neck vessels. Eur Radiol 17(Suppl 2):B30–B37

    PubMed  Google Scholar 

  10. Chen JW, Breckwoldt MO, Aikawa E, Chiang G, Weissleder R (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131:1123–1133

    Article  PubMed  PubMed Central  Google Scholar 

  11. Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E, Qiu S, Moskowitz MA, Weissleder R (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A 105:18584–18589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forghani R, Wojtkiewicz GR, Zhang YN et al (2012) Demyelinating diseases: myeloperoxidase as an imaging biomarker and therapeutic target. Radiology 263:451–460

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saleh A, Schroeter M, Ringelstein A, Hartung HP, Siebler M, Modder U, Jander S (2007) Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 38:2733–2737

    Article  PubMed  Google Scholar 

  15. Vellinga MM, Engberink RDO, Seewann A, Pouwels PJW, Wattjes MP, van der Pol SMA, Pering C, Polman CH, de Vries HE, Geurts JJG, Barkhof F (2008) Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131:800–807

    Article  PubMed  Google Scholar 

  16. Farrell BT, Hamilton BE, Dosa E, Rimely E, Nasseri M, Gahramanov S, Lacy CA, Frenkel EP, Doolittle ND, Jacobs PM, Neuwelt EA (2013) Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL. Neurology 81:256–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dousset V, Brochet B, Deloire MSA, Lagoarde L, Barroso B, Caille JM, Petry KG (2006) MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. Am J Neuroradiol 27:1000–1005

    CAS  PubMed  Google Scholar 

  18. Michalska M, Machtoub L, Manthey HD, Bauer E, Herold V, Krohne G, Lykowsky G, Hildenbrand M, Kampf T, Jakob P, Zernecke A, Bauer WR (2012) Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler Thromb Vasc Biol 32:2350–2357

    Article  CAS  PubMed  Google Scholar 

  19. Frechou M, Beray-Berthat V, Raynaud JS, Meriaux S, Gombert F, Lancelot E, Plotkine M, Marchand-Leroux C, Ballet S, Robert P, Louin G, Margaill I (2013) Detection of vascular cell adhesion molecule-1 expression with USPIO-enhanced molecular MRI in a mouse model of cerebral ischemia. Contrast Media Mol Imaging 8:157–164

    Article  CAS  PubMed  Google Scholar 

  20. Montagne A, Gauberti M, Macrez R, Jullienne A, Briens A, Raynaud JS, Louin G, Buisson A, Haelewyn B, Docagne F, Defer G, Vivien D, Maubert E (2012) Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. Neuroimage 63:760–770

    Article  PubMed  Google Scholar 

  21. Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 133:36–45

    Article  CAS  PubMed  Google Scholar 

  22. Sun PZ, Benner T, Copen WA, Sorensen AG (2010) Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla. Stroke 41:S147–S151

    Article  PubMed  PubMed Central  Google Scholar 

  23. McVicar N, Li AX, Goncalves DF, Bellyou M, Meakin SO, Prado MA, Bartha R (2014) Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood Flow Metab 34:690–698

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dula AN, Asche EM, Landman BA, Welch EB, Pawate S, Sriram S, Gore JC, Smith SA (2011) Development of chemical exchange saturation transfer at 7 T. Magn Reson Med 66:831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ross BD, Bhattacharya P, Wagner S, Tran T, Sailasuta N (2010) Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism. Am J Neuroradiol 31:24–33

    Article  CAS  PubMed  Google Scholar 

  26. Marjanska M, Iltis I, Shestov AA, Deelchand DK, Nelson C, Ugurbil K, Henry PG (2010) In vivo 13C spectroscopy in the rat brain using hyperpolarized [1-(13)C]pyruvate and [2-(13)C]pyruvate. J Magn Reson 206:210–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park JM, Recht LD, Josan S, Merchant M, Jang T, Yen YF, Hurd RE, Spielman DM, Mayer D (2013) Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized (13)C magnetic resonance spectroscopic imaging. Neuro Oncol 15:433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karlsson M, Jensen PR, in ’t Zandt R, Gisselsson A, Hansson G, Duus JO, Meier S, Lerche MH (2010) Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate. Int J Cancer 127:729–736

    Article  CAS  PubMed  Google Scholar 

  29. Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(13)C]pyruvate. Sci Transl Med 5:198ra108

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sabri O, Seibyl J, Rowe C, Barthel H (2015) Beta-amyloid imaging with florbetaben. Clin Transl Imaging 3:13–26

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dierckx RA, Otte A, de Vries EFJ, van Waarde A, Leenders KL (2014) PET and SPECT in neurology. Springer, Berlin

    Book  Google Scholar 

  32. Wadsworth H, Jones PA, Chau WF et al (2012) [18F]-GE-180: a novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorg Med Chem Lett 22:1308–1313

    Article  CAS  PubMed  Google Scholar 

  33. Weichert JP, Clark PA, Kandela IK et al (2014) Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy. Sci Transl Med 6:240ra275

    Article  Google Scholar 

  34. Barret O, Thomae D, Tavares A, Alagille D, Papin C, Waterhouse R, McCarthy T, Jennings D, Marek K, Russell D, Seibyl J, Tamagnan G (2014) In vivo assessment and dosimetry of 2 novel PDE10A PET radiotracers in humans: [18F]-MNI-659 and [18F]-MNI-654. J Nucl Med 55:1297–1304

    Article  CAS  PubMed  Google Scholar 

  35. Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Day H, Looby RJ, Ay I, Caravan P (2014) Effect of chelate type and radioisotope on the imaging efficacy of 4 fibrin-specific PET probes. J Nucl Med 55:1157–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wey HY, Wang C, Schroeder FA, Logan J, Price JC, Hooker JM (2015) Kinetic analysis and quantification of [11C]-Martinostat for in vivo HDAC imaging of the brain. ACS Chem Neurosci 6:708–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312

    Article  CAS  PubMed  Google Scholar 

  38. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B (2008) Nuclear imaging of neuroinflammation: a comprehensive review of [11C]-PK11195 challengers. Eur J Nucl Med Mol Imaging 35:2304–2319

    Article  PubMed  Google Scholar 

  39. Dickens AM, Vainio S, Marjamaki P, Johansson J, Lehtiniemi P, Rokka J, Rinne J, Solin O, Haaparanta-Solin M, Jones PA, Trigg W, Anthony DC, Airas L (2014) Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers [11C]-(R)-PK11195 and [18F]-GE-180. J Nucl Med 55:466–472

    Article  CAS  PubMed  Google Scholar 

  40. Boutin H, Murray K, Pradillo J, Maroy R, Smigova A, Gerhard A, Jones PA, Trigg W (2015) [18F]-GE-180: a novel TSPO radiotracer compared to [11C]-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging 42:503–511

    Article  CAS  PubMed  Google Scholar 

  41. Wickstrom T, Clarke A, Gausemel I, Horn E, Jorgensen K, Khan I, Mantzilas D, Rajanayagam T, in ’t Veld DJ, Trigg W (2014) The development of an automated and GMP compliant FASTlab Synthesis of [18F]GE-180; a radiotracer for imaging translocator protein (TSPO). J Labelled Comp Radiopharm 57:42–48

    Article  CAS  PubMed  Google Scholar 

  42. Morris ZS, Weichert JP, Saker J, Armstrong EA, Besemer A, Bednarz B, Kimple RJ, Harari PM (2015) Therapeutic combination of radiolabeled CLR1404 with external beam radiation in head and neck cancer model systems. Radiother Oncol 116:504–509

    Article  CAS  PubMed  Google Scholar 

  43. Grudzinski JJ, Titz B, Kozak K, Clarke W, Allen E, Trembath L, Stabin M, Marshall J, Cho SY, Wong TZ, Mortimer J, Weichert JP (2014) A phase 1 study of [131I]-CLR1404 in patients with relapsed or refractory advanced solid tumors: dosimetry, biodistribution, pharmacokinetics, and safety. PLoS One 9:e111652

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 85:5733–5737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Russell DS, Barret O, Jennings DL, Friedman JH, Tamagnan GD, Thomae D, Alagille D, Morley TJ, Papin C, Papapetropoulos S, Waterhouse RN, Seibyl JP, Marek KL (2014) The phosphodiesterase 10 positron emission tomography tracer, [18F]-MNI-659, as a novel biomarker for early Huntington disease. JAMA Neurol 71:1520–1528

    Article  PubMed  Google Scholar 

  46. Ay I, Blasi F, Rietz TA, Rotile NJ, Kura S, Brownell AL, Day H, Oliveira BL, Looby RJ, Caravan P (2014) In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe. Circ Cardiovasc Imaging 7:697–705

    Article  PubMed  PubMed Central  Google Scholar 

  47. Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Naha PC, Cormode DP, Izquierdo-Garcia D, Catana C, Caravan P (2015) Multisite thrombus imaging and fibrin content estimation with a single whole-body PET scan in rats. Arterioscler Thromb Vasc Biol 35:2114–2121

    Article  CAS  PubMed  Google Scholar 

  48. Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Day H, Naha PC, Cormode DP, Izquierdo-Garcia D, Catana C, Caravan P (2015) Radiation dosimetry of the fibrin-binding probe 64Cu-FBP8 and its feasibility for PET imaging of deep vein thrombosis and pulmonary embolism in rats. J Nucl Med 56:1088–1093

    Article  CAS  PubMed  Google Scholar 

  49. Wang C, Schroeder FA, Wey HY, Borra R, Wagner FF, Reis S, Kim SW, Holson EB, Haggarty SJ, Hooker JM (2014) In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs. J Med Chem 57:7999–8009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang C, Schroeder FA, Hooker JM (2014) Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques. Neuroscience 264:186–197

    Article  CAS  PubMed  Google Scholar 

  51. Catana C, Drzezga A, Heiss WD, Rosen BR (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925

    Article  PubMed  Google Scholar 

  52. Drzezga A, Barthel H, Minoshima S, Sabri O (2014) Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med 55:47S–55S

    Article  PubMed  Google Scholar 

  53. Catana C, Guimaraes AR, Rosen BR (2013) PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med 54:815–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Werner P, Barthel H, Drzezga A, Sabri O (2015) Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging 42:512–526

    Article  CAS  PubMed  Google Scholar 

  55. Besson FL, La Joie R, Doeuvre L, Gaubert M, Mezenge F, Egret S, Landeau B, Barre L, Abbas A, Ibazizene M, de La Sayette V, Desgranges B, Eustache F, Chetelat G (2015) Cognitive and brain profiles associated with current neuroimaging biomarkers of preclinical Alzheimer’s disease. J Neurosci 35:10402–10411

    Article  CAS  PubMed  Google Scholar 

  56. Wey HY, Catana C, Hooker JM, Dougherty DD, Knudsen GM, Wang DJ, Chonde DB, Rosen BR, Gollub RL, Kong J (2014) Simultaneous fMRI-PET of the opioidergic pain system in human brain. Neuroimage 102(Pt 2):275–282

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yau WY, Tudorascu DL, McDade EM et al (2015) Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study. Lancet Neurol 14:804–813

    Article  PubMed  Google Scholar 

  58. Filss CP, Galldiks N, Stoffels G, Sabel M, Wittsack HJ, Turowski B, Antoch G, Zhang K, Fink GR, Coenen HH, Shah NJ, Herzog H, Langen KJ (2014) Comparison of [18F]-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 55:540–545

    Article  CAS  PubMed  Google Scholar 

  59. Henriksen OM, Larsen VA, Muhic A, Hansen AE, Larsson HB, Poulsen HS, Law I (2015) Simultaneous evaluation of brain tumour metabolism, structure and blood volume using [18F]-fluoroethyltyrosine (FET) PET/MRI: feasibility, agreement and initial experience. Eur J Nucl Med Mol Imaging 43(1):103–112

    Article  PubMed  Google Scholar 

  60. Larsen VA, Simonsen HJ, Law I, Larsson HB, Hansen AE (2013) Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology 55:361–369

    Article  PubMed  Google Scholar 

  61. Walter HL, Walberer M, Rueger MA, Backes H, Wiedermann D, Hoehn M, Neumaier B, Graf R, Fink GR, Schroeter M (2015) In vivo analysis of neuroinflammation in the late chronic phase after experimental stroke. Neuroscience 292:71–80

    Article  CAS  PubMed  Google Scholar 

  62. Belloli S, Brioschi A, Politi LS, Ronchetti F, Calderoni S, Raccagni I, Pagani A, Monterisi C, Zenga F, Zara G, Fazio F, Mauro A, Moresco RM (2013) Characterization of biological features of a rat F98 GBM model: a PET-MRI study with [18F]-FAZA and [18F]-FDG. Nucl Med Biol 40:831–840

    Article  CAS  PubMed  Google Scholar 

  63. Uppal R, Catana C, Ay I, Benner T, Sorensen AG, Caravan P (2011) Bimodal thrombus imaging: simultaneous PET/MR imaging with a fibrin-targeted dual PET/MR probe–feasibility study in rat model. Radiology 258:812–820

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lewis CM, Graves SA, Hernandez R, Valdovinos HF, Barnhart TE, Cai W, Meyerand ME, Nickles RJ, Suzuki M (2015) 52Mn production for PET/MRI tracking of human stem cells expressing divalent metal transporter 1 (DMT1). Theranostics 5:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110:3019–3042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Aime acknowledges MIUR (PRIN 2012SK7ASN) and AIRC (Investigator Grant IG 14565) for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Aime PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arena, F., Aime, S., Blasi, F. (2016). Contrast Media. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics