Skip to main content

Hybrid Imaging in Cerebrovascular Disease: Ischemic Stroke

  • Chapter
  • First Online:
Book cover PET-CT and PET-MRI in Neurology

Abstract

Since the introduction of thrombolytic therapy as the basis of acute stroke treatment, neuroimaging has rapidly advanced to empower therapeutic decision making. Due to its ability to quantitatively measure important metabolic variables, PET was first used to distinguish the necrotic core following an ischemic cerebrovascular event from the surrounding tissue with reduced blood flow and reduced function but still viable and therefore potentially salvageable (penumbra). Using the [15O]-oxygen inhalation technique, absolute values of the cerebral blood flow were found that could distinguish the core from the penumbra with corresponding clinical outcomes; increased oxygen extraction fraction and normal oxygen metabolic rate could also distinguish core and penumbra. With the development of multiparametric computed tomography (CT) and magnetic resonance imaging (MRI), the role of PET became much more limited and restrained to some research protocols including either [18F]-fluoro-2-deoxy-D-glucose or receptor tracers to predict tissue necrosis after stroke. [11C]-flumazenil is a marker of cortical neuronal integrity and can reliably offer information for cortical ischemic injury. Another tracer that has been used in PET stroke imaging is [18F]-fluoromisonidazole, which binds preferentially to hypoxic but viable tissue in the periphery of the infarct or in close peri-infarct regions. PET with [18F]-fluoro-2-deoxy-D-glucose may be used to assess the vulnerability to rupture of carotid atherosclerotic plaques. MRI diffusion-weighted imaging is considered the most sensitive and accurate neuroradiological method for stroke detection and, associated with perfusion-weighted imaging, provides information on the functional status of the ischemic brain. It can also help to identify a response to thrombolytic and neuroprotective therapies. The simultaneous acquisition of both PET and MRI in modern PET/MR scanners may help to enhance the diagnostic values of the two modalities, and it should represent the optimal diagnostic approach in cerebrovascular diseases as stroke in the next future. The main limitation to the use of PET/MRI in stroke assessment would be the limited availability in most stroke centers, particularly in the emergency setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein LB et al (2006) Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 113(24):e873–e923

    PubMed  Google Scholar 

  2. Soler EP, Ruiz VC (2010) Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: similarities and differences. Curr Cardiol Rev 6(3):138–149

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jauch EC et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(3):870–947

    Article  PubMed  Google Scholar 

  4. Hossmann KA (2008) Cerebral ischemia: models, methods and outcomes. Neuropharmacology 55(3):257–270

    Article  CAS  PubMed  Google Scholar 

  5. Heiss WD (2014) Radionuclide imaging in ischemic stroke. J Nucl Med 55(11):1831–1841

    Article  CAS  PubMed  Google Scholar 

  6. Back T et al (2000) Penumbral tissue alkalosis in focal cerebral ischemia: relationship to energy metabolism, blood flow, and steady potential. Ann Neurol 47(4):485–492

    Article  CAS  PubMed  Google Scholar 

  7. Paciaroni M, Caso V, Agnelli G (2009) The concept of ischemic penumbra in acute stroke and therapeutic opportunities. Eur Neurol 61(6):321–330

    Article  PubMed  Google Scholar 

  8. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12(6):723–725

    Article  CAS  PubMed  Google Scholar 

  9. Moustafa RR, Baron JC (2007) Clinical review: imaging in ischaemic stroke – implications for acute management. Crit Care 11(5):227

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alper BS et al (2015) Thrombolysis in acute ischaemic stroke: time for a rethink? BMJ 350:h1075

    Article  PubMed  Google Scholar 

  11. Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41(4 Suppl S):15S–22S

    Article  CAS  PubMed  Google Scholar 

  12. Libby P et al (1997) Molecular determinants of atherosclerotic plaque vulnerability. Ann N Y Acad Sci 811:134–142; discussion 142–5

    Article  CAS  PubMed  Google Scholar 

  13. Libby P et al (1996) Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 7(5):330–335

    Article  CAS  PubMed  Google Scholar 

  14. Aikawa M, Libby P (2004) The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 13(3):125–138

    Article  PubMed  Google Scholar 

  15. Wardlaw JM et al (2014) Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 7:CD000213

    Google Scholar 

  16. Emberson J et al (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384(9958):1929–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamauchi H (2015) Evidence for cerebral hemodynamic measurement-based therapy in symptomatic major cerebral artery disease. Neurol Med Chir (Tokyo) 55(6):453–459

    Article  Google Scholar 

  18. Guadagno JV, Calautti C, Baron JC (2003) Progress in imaging stroke: emerging clinical applications. Br Med Bull 65:145–157

    Article  CAS  PubMed  Google Scholar 

  19. Frackowiak RS et al (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4(6):727–736

    Article  CAS  PubMed  Google Scholar 

  20. Baron JC (1999) Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 9(4):193–201

    Article  CAS  PubMed  Google Scholar 

  21. Baron JC et al (1981) Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 20(3):273–284

    Article  CAS  PubMed  Google Scholar 

  22. Heiss WD et al (1994) Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 14(6):892–902

    Article  CAS  PubMed  Google Scholar 

  23. Giffard C et al (2004) Outcome of acutely ischemic brain tissue in prolonged middle cerebral artery occlusion: a serial positron emission tomography investigation in the baboon. J Cereb Blood Flow Metab 24(5):495–508

    Article  PubMed  Google Scholar 

  24. Pappata S et al (1993) PET study of changes in local brain hemodynamics and oxygen metabolism after unilateral middle cerebral artery occlusion in baboons. J Cereb Blood Flow Metab 13(3):416–424

    Article  CAS  PubMed  Google Scholar 

  25. Touzani O et al (1995) Sequential studies of severely hypometabolic tissue volumes after permanent middle cerebral artery occlusion. A positron emission tomographic investigation in anesthetized baboons. Stroke 26(11):2112–2119

    Article  CAS  PubMed  Google Scholar 

  26. Shimosegawa E et al (2005) Metabolic penumbra of acute brain infarction: a correlation with infarct growth. Ann Neurol 57(4):495–504

    Article  PubMed  Google Scholar 

  27. Vespa P et al (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25(6):763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baron JC (1985) Positron tomography in cerebral ischemia. A review. Neuroradiology 27(6):509–516

    Article  CAS  PubMed  Google Scholar 

  29. Heiss WD, Podreka I (1993) Role of PET and SPECT in the assessment of ischemic cerebrovascular disease. Cerebrovasc Brain Metab Rev 5(4):235–263

    CAS  PubMed  Google Scholar 

  30. Bunevicius A, Yuan H, Lin W (2013) The potential roles of 18F-FDG-PET in management of acute stroke patients. Biomed Res Int 2013:634598

    Article  PubMed  PubMed Central  Google Scholar 

  31. Riche F et al (2001) Nitroimidazoles and hypoxia imaging: synthesis of three technetium-99m complexes bearing a nitroimidazole group: biological results. Bioorg Med Chem Lett 11(1):71–74

    Article  CAS  PubMed  Google Scholar 

  32. Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22(3):265–280

    Article  CAS  PubMed  Google Scholar 

  33. Markus R et al (2002) Statistical parametric mapping of hypoxic tissue identified by [(18)F]fluoromisonidazole and positron emission tomography following acute ischemic stroke. Neuroimage 16(2):425–433

    Article  CAS  PubMed  Google Scholar 

  34. Read SJ et al (2000) The fate of hypoxic tissue on 18F-fluoromisonidazole positron emission tomography after ischemic stroke. Ann Neurol 48(2):228–235

    Article  CAS  PubMed  Google Scholar 

  35. Sorger D et al (2003) [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 30(3):317–326

    Article  CAS  PubMed  Google Scholar 

  36. Takasawa M et al (2007) Imaging of brain hypoxia in permanent and temporary middle cerebral artery occlusion in the rat using 18F-fluoromisonidazole and positron emission tomography: a pilot study. J Cereb Blood Flow Metab 27(4):679–689

    PubMed  Google Scholar 

  37. Read SJ et al (1998) Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology 51(6):1617–1621

    Article  CAS  PubMed  Google Scholar 

  38. Powers WJ, Zazulia AR (2010) PET in cerebrovascular disease. PET Clin 5(1):83106

    Article  PubMed  PubMed Central  Google Scholar 

  39. Donnan GA, Davis SM (2002) Neuroimaging, the ischaemic penumbra, and selection of patients for acute stroke therapy. Lancet Neurol 1(7):417–425

    Article  PubMed  Google Scholar 

  40. Nour M, Liebeskind DS (2014) Imaging of cerebral ischemia: from acute stroke to chronic disorders. Neurol Clin 32(1):193–209

    Article  PubMed  Google Scholar 

  41. Mintun MA et al (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15(3):217–227

    Article  CAS  PubMed  Google Scholar 

  42. Logan J et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16(5):834–840

    Article  CAS  PubMed  Google Scholar 

  43. Carson RE et al (1997) Quantification of amphetamine-induced changes in [11C]raclopride binding with continuous infusion. J Cereb Blood Flow Metab 17(4):437–447

    Article  CAS  PubMed  Google Scholar 

  44. Innis RB et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27(9):1533–1539

    Article  CAS  PubMed  Google Scholar 

  45. Koeppe RA et al (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11(5):735–744

    Article  CAS  PubMed  Google Scholar 

  46. Heiss WD, Sobesky J (2008) Comparison of PET and DW/PW-MRI in acute ischemic stroke. Keio J Med 57(3):125–131

    Article  PubMed  Google Scholar 

  47. Thiel A et al (2001) Estimation of regional cerebral blood flow levels in ischemia using [(15)O]water of [(11)C]flumazenil PET without arterial input function. J Comput Assist Tomogr 25(3):446–451

    Article  CAS  PubMed  Google Scholar 

  48. Yamauchi H et al (2005) Selective neuronal damage and borderzone infarction in carotid artery occlusive disease: a 11C-flumazenil PET study. J Nucl Med 46(12):1973–1979

    CAS  PubMed  Google Scholar 

  49. Eliassen JC et al (2008) Brain-mapping techniques for evaluating poststroke recovery and rehabilitation: a review. Top Stroke Rehabil 15(5):427–450

    Article  PubMed  PubMed Central  Google Scholar 

  50. Halliday A et al (2004) Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet 363(9420):1491–1502

    Article  CAS  PubMed  Google Scholar 

  51. Bengel FM (2006) Atherosclerosis imaging on the molecular level. J Nucl Cardiol 13(1):111–118

    Article  PubMed  Google Scholar 

  52. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104(4):503–516

    Article  CAS  PubMed  Google Scholar 

  53. Yun M et al (2001) F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med 26(4):314–319

    Article  CAS  PubMed  Google Scholar 

  54. Rudd JH et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105(23):2708–2711

    Article  CAS  PubMed  Google Scholar 

  55. Davies JR et al (2005) Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 36(12):2642–2647

    Article  PubMed  Google Scholar 

  56. Tahara N et al (2007) Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 49(14):1533–1539

    Article  CAS  PubMed  Google Scholar 

  57. Tahara N et al (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48(9):1825–1831

    Article  CAS  PubMed  Google Scholar 

  58. Selco SL, Liebeskind DS (2005) Hyperacute imaging of ischemic stroke: role in therapeutic management. Curr Cardiol Rep 7(1):10–15

    Article  PubMed  Google Scholar 

  59. Wintermark M et al (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36(9):e83–e99

    Article  PubMed  Google Scholar 

  60. Wintermark M et al (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37(4):979–985

    Article  PubMed  Google Scholar 

  61. Wintermark M et al (2007) Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology 68(9):694–697

    Article  CAS  PubMed  Google Scholar 

  62. Muir KW et al (2006) Imaging of acute stroke. Lancet Neurol 5(9):755–768

    Article  PubMed  Google Scholar 

  63. Fiebach JB et al (2002) CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33(9):2206–2210

    Article  CAS  PubMed  Google Scholar 

  64. Hjort N et al (2005) Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke 36(2):388–397

    Article  CAS  PubMed  Google Scholar 

  65. Srinivasan A et al (2006) State-of-the-art imaging of acute stroke. Radiographics 26(Suppl 1):S75–S95

    Article  PubMed  Google Scholar 

  66. Allen LM et al (2012) Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 32(5):1285–1297; discussion 1297–9

    Article  PubMed  Google Scholar 

  67. Catana C et al (2012) PET/MRI for neurologic applications. J Nucl Med 53(12):1916–1925

    Article  PubMed  Google Scholar 

  68. Fernandez-Ortiz A et al (2013) The Progression and Early detection of Subclinical Atherosclerosis (PESA) study: rationale and design. Am Heart J 166(6):990–998

    Article  PubMed  Google Scholar 

  69. Heiss WD (2001) Imaging the ischemic penumbra and treatment effects by PET. Keio J Med 50(4):249–256

    Article  CAS  PubMed  Google Scholar 

  70. Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20(9):1276–1293

    Article  CAS  PubMed  Google Scholar 

  71. Heiss WD (2003) Best measure of ischemic penumbra: positron emission tomography. Stroke 34(10):2534–2535

    Article  PubMed  Google Scholar 

  72. Arauz A et al (2007) Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 109(5):409–412

    Article  PubMed  Google Scholar 

  73. Izquierdo-Garcia D et al (2009) Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke 40(1):86–93

    Article  PubMed  Google Scholar 

  74. Hyafil F et al (2016) High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging 43(2):270–279

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Giovannini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giovannini, E., Giovacchini, G., Ciarmiello, A. (2016). Hybrid Imaging in Cerebrovascular Disease: Ischemic Stroke. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics