Skip to main content

PET/CT and PET/MRI in Neurology: Infection/Inflammation

  • Chapter
  • First Online:
Book cover PET-CT and PET-MRI in Neurology

Abstract

For more than a century, X-ray was the only available modality allowing observation of inner workings of the human body. Today, a new generation of imaging devices is probing even deeper and transforming medicine in the process. Indeed, recent advances in imaging technology such as CT scans, MRIs, SPECT, and PET scans and other techniques have had a major impact on the diagnosis and treatment of disease. Nuclear medicine techniques for imaging inflammation and infection have enormously expanded gaining importance in the diagnostic setting as well as for prognostic implication and management of treatment. This important clinical role relies on the ability of functional imaging to pinpoint different components and phases of inflammatory and infectious diseases beside the pure morphological anomaly generally depicted by the majority of radiological imaging procedures. Indeed, the use of nuclear medicine techniques allows in vivo histological characterization of inflamed and infected tissues and highlights cells and phenomena principally involved, thus allowing definition of tailored personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boerman OC, Rennen H, Oyen WJ, Corstens FH (2001) Radiopharmaceuticals to image infection and inflammation. Semin Nucl Med 31:286–295

    Article  CAS  PubMed  Google Scholar 

  2. Rennen HJ, Boerman OC, Oyen WJ, Corstens FH (2001) Imaging infection/inflammation in the new millennium. Eur J Nucl Med 28:241–252

    Article  CAS  PubMed  Google Scholar 

  3. Pulli B, Chen J (2014) Imaging neuroinflammation – from bench to bedside. J Clin Cell Immunol 5:226

    Google Scholar 

  4. Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T et al (2008) Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation 5:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wareham D, Michael J, Das S (2005) Advances in bacterial specific imaging. Braz Arch Biol Technol 48:145–152

    Article  Google Scholar 

  6. Das SS, Hall AV, Wareham DW, Britton KE (2002) Infection imaging with radiopharmaceuticals in the 21st century. Brazilian Arch Biol Technol 45:25–37

    Article  CAS  Google Scholar 

  7. Siaens RH, Rennen HJ, Boerman OC, Dierckx R, Slegers G (2004) Synthesis and comparison of 99mTc-enrofloxacin and 99mTc-ciprofloxacin. J Nucl Med 45:2088–2094

    CAS  PubMed  Google Scholar 

  8. Gomes Barreto V, Iglesias F, Roca M, Tubau F, Martín-Comín J (2000) Labelling of ceftizoxime with 99mTc. Rev Española Med Nucl 19:479–483

    Article  CAS  Google Scholar 

  9. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  10. Welling MM, Nibbering PH, Paulusma-Annema A, Hiemstra PS, Pauwels EK, Calame W (1999) Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1. J Nucl Med 40:2073–2080

    CAS  PubMed  Google Scholar 

  11. Hiemstra PS, van den Barselaar MT, Roest M, Nibbering PH, van Furth R (1999) Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J Leukoc Biol 66:423–428

    CAS  PubMed  Google Scholar 

  12. Welling MM, Mongera S, Lupetti A, Balter HS, Bonetto V, Mazzi U et al (2002) Radiochemical and biological characteristics of 99mTc-UBI 29–41 for imaging of bacterial infections. Nucl Med Biol 29:413–422

    Article  CAS  PubMed  Google Scholar 

  13. Ebenhan T, Zeevaart JR, Venter JD, Govender T, Kruger GH, Jarvis NV et al (2014) Preclinical evaluation of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging. J Nucl Med 55:308–314

    Article  CAS  PubMed  Google Scholar 

  14. Bettegowda C, Foss CA, Cheong I, Wang Y, Diaz L, Agrawal N et al (2005) Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-beta-D-arabinofuranosyl)-5-iodouracil. Proc Natl Acad Sci U S A 102:1145–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Diaz LA, Foss CA, Thornton K, Nimmagadda S, Endres CJ, Uzuner O et al (2007) Imaging of musculoskeletal bacterial infections by [124 I]FIAU-PET/CT. PLoS One 2:e1007

    Google Scholar 

  16. Petruzzi N, Shanthly N, Thakur M (2009) Recent trends in soft-tissue infection imaging. Semin Nucl Med 39:115–123

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tulchinsky M, Peters AM (2005) Leukocyte receptor-binding radiopharmaceuticals for infection and inflammation scintigraphy. J Nucl Med 46:718–721

    CAS  PubMed  Google Scholar 

  18. Erba PA, Conti U, Lazzeri E, Sollini M, Doria R, De Tommasi SM et al (2012) Added value of 99mTc-HMPAO-labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J Nucl Med 53:1235–1243

    Google Scholar 

  19. Kataoka H, Inoue M, Shinkai T, Ueno S (2007) Early dynamic SPECT imaging in acute viral encephalitis. J Neuroimaging 17:304–310

    Article  PubMed  Google Scholar 

  20. Prandini N, Lazzeri E, Rossi B, Erba P, Parisella MG, Signore A (2006) Nuclear medicine imaging of bone infections. Nucl Med Commun 27:633–644

    Article  PubMed  Google Scholar 

  21. Grippaudo FR, Pacilio M, Di Girolamo M, Dierckx RA, Signore A (2013) Radiolabelled white blood cell scintigraphy in the work-up of dermal filler complications. Eur J Nucl Med Mol Imaging 40:418–425

    Article  CAS  PubMed  Google Scholar 

  22. Liberatore M, Drudi FM, Tarantino R, Prosperi D, Fiore V, Missori P et al (2003) Tc-99m exametazime-labeled leukocyte scans in the study of infections in skull neurosurgery. Clin Nucl Med 28:971–974

    Article  PubMed  Google Scholar 

  23. Schillaci O (2009) Hybrid imaging systems in the diagnosis of osteomyelitis and prosthetic joint infection. Q J Nucl Med Mol Imaging 53:95–104

    CAS  PubMed  Google Scholar 

  24. Rehncrona S, Brismar J, Holtås S (1985) Diagnosis of brain abscesses with indium-111-labeled leukocytes. Neurosurgery 16:23–26

    Article  CAS  PubMed  Google Scholar 

  25. Bellotti C, Medina M, Oliveri G, Ettorre F, Barrale S, Sturiale C et al (1988) Cerebral scintigraphy with 111indium oxine-labelled leukocytes in the differential diagnosis of intracerebral cystic lesions. Acta Neurochir Suppl 42:221–224

    CAS  PubMed  Google Scholar 

  26. Palestro CJ, Swyer AJ, Kim CK, Muzinic M, Goldsmith SJ (1991) Role of in-111 labeled leukocyte scintigraphy in the diagnosis of intracerebral lesions. Clin Nucl Med 16:305–308

    Article  CAS  PubMed  Google Scholar 

  27. Grimstad IA, Hirschberg H, Rootwelt K (1992) 99mTc-hexamethylpropyleneamine oxime leukocyte scintigraphy and C-reactive protein levels in the differential diagnosis of brain abscesses. J Neurosurg 77:732–736

    Article  CAS  PubMed  Google Scholar 

  28. Garg A (2011) Vascular brain pathologies. Neuroimaging Clin N Am 21:897–926, ix

    Article  PubMed  Google Scholar 

  29. Néel A, Pagnoux C, Guillevin L, Hamidou M (2012) Central nervous system vasculitides: an update. Rev Med Interne 33:381–389

    Article  PubMed  Google Scholar 

  30. Alba MA, Espígol-Frigolé G, Prieto-González S, Tavera-Bahillo I, García-Martínez A, Butjosa M et al (2011) Central nervous system vasculitis: still more questions than answers. Curr Neuropharmacol 9:437–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gross WL, Trabandt A, Reinhold-Keller E (2000) Diagnosis and evaluation of vasculitis. Rheumatology (Oxford) 39:245–252

    Article  CAS  Google Scholar 

  32. Küker W (2007) Cerebral vasculitis: imaging signs revisited. Neuroradiology 49:471–479

    Article  PubMed  Google Scholar 

  33. Blockmans D, De Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H (2007) Repetitive 18-fluorodeoxyglucose positron emission tomography in isolated polymyalgia rheumatica: a prospective study in 35 patients. Rheumatology 46:672–677

    Article  CAS  PubMed  Google Scholar 

  34. Andrews J, Al-Nahhas A, Pennell DJ, Hossain MS, Davies KA, Haskard DO et al (2004) Non-invasive imaging in the diagnosis and management of Takayasu’s arteritis. Ann Rheum Dis 63:995–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abdel Razek AAK, Alvarez H, Bagg S, Refaat S, Castillo M (2014) Imaging spectrum of CNS vasculitis. Radiographics 34:873–894

    Article  PubMed  Google Scholar 

  36. Poels MMF, Ikram MA, Vernooij MW (2012) Improved MR imaging detection of cerebral microbleeds more accurately identifies persons with vasculopathy. AJNR Am J Neuroradiol 33:1553–1556

    Article  CAS  PubMed  Google Scholar 

  37. Pipitone N, Versari A, Salvarani C (2008) Role of imaging studies in the diagnosis and follow-up of large-vessel vasculitis: an update. Rheumatology (Oxford) 47:403–408

    Article  CAS  Google Scholar 

  38. Belhocine T, Blockmans D, Hustinx R, Vandevivere J, Mortelmans L (2003) Imaging of large vessel vasculitis with (18)FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging 30:1305–1313

    Article  PubMed  Google Scholar 

  39. Bleeker-Rovers CP, Bredie SJH, van der Meer JWM, Corstens FHM, Oyen WJG (2003) F-18-fluorodeoxyglucose positron emission tomography in diagnosis and follow-up of patients with different types of vasculitis. Neth J Med 61:323–329

    CAS  PubMed  Google Scholar 

  40. Meller J, Sahlmann C-O, Scheel AK (2007) 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med 48:35–45

    CAS  PubMed  Google Scholar 

  41. Bleeker-Rovers CP, Vos FJ, Wanten GJA, van der Meer JWM, Corstens FHM, Kullberg B-J et al (2005) 18F-FDG PET in detecting metastatic infectious disease. J Nucl Med 46:2014–2019

    CAS  PubMed  Google Scholar 

  42. Meller J, Strutz F, Siefker U, Scheel A, Sahlmann CO, Lehmann K et al (2003) Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging 30:730–736

    Article  CAS  PubMed  Google Scholar 

  43. Tezuka D, Haraguchi G, Ishihara T, Ohigashi H, Inagaki H, Suzuki J et al (2012) Role of FDG PET-CT in Takayasu arteritis: sensitive detection of recurrences. JACC Cardiovasc Imaging 5:422–429

    Article  PubMed  Google Scholar 

  44. Otsuka H, Morita N, Yamashita K, Nishitani H (2007) FDG-PET/CT for diagnosis and follow-up of vasculitis. J Med Invest 54:345–349

    Article  PubMed  Google Scholar 

  45. Meller J, Grabbe E, Becker W, Vosshenrich R (2003) Value of F-18 FDG hybrid camera PET and MRI in early Takayasu aortitis. Eur Radiol 13:400–405

    CAS  PubMed  Google Scholar 

  46. Blockmans D, Maes A, Stroobants S, Nuyts J, Bormans G, Knockaert D et al (1999) New arguments for a vasculitic nature of polymyalgia rheumatica using positron emission tomography. Rheumatology (Oxford) 38:444–447

    Article  CAS  Google Scholar 

  47. Moosig F, Czech N, Mehl C, Henze E, Zeuner RA, Kneba M et al (2004) Correlation between 18-fluorodeoxyglucose accumulation in large vessels and serological markers of inflammation in polymyalgia rheumatica: a quantitative PET study. Ann Rheum Dis 63:870–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Webb M, Chambers A, Al-Nahhas A, Mason JC, Maudlin L, Rahman L et al (2004) The role of 18F-FDG PET in characterising disease activity in Takayasu arteritis. Eur J Nucl Med Mol Imaging 31:627–634

    Article  PubMed  Google Scholar 

  49. Kobayashi Y, Ishii K, Oda K, Nariai T, Tanaka Y, Ishiwata K et al (2005) Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. J Nucl Med 46:917–922

    PubMed  Google Scholar 

  50. Einspieler I, Thürmel K, Pyka T, Eiber M, Wolfram S, Moog P et al (2015) Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study. Eur J Nucl Med Mol Imaging 42:1012–1024

    Article  CAS  PubMed  Google Scholar 

  51. Scheel AK, Meller J, Vosshenrich R, Kohlhoff E, Siefker U, Müller GA et al (2004) Diagnosis and follow up of aortitis in the elderly. Ann Rheum Dis 63:1507–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rehák Z, Szturz P, Křen L, Fojtík Z, Staníček J (2014) Upsampling from aorta and aortic branches: PET/CT hybrid imaging identified 18F-FDG hypermetabolism in inflamed temporal and occipital arteries. Clin Nucl Med 39:e84–e86

    Article  PubMed  Google Scholar 

  53. Weyand CM, Goronzy JJ (2003) Medium- and large-vessel vasculitis. N Engl J Med 349:160–169

    Article  CAS  PubMed  Google Scholar 

  54. Venneti S, Lopresti B, Wiley C (2006) The peripheral benzodiazepine receptor in microglia: from pathology to imaging. Prog Neurobiol 80:308–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Starosta-Rubinstein S, Ciliax BJ, Penney JB, McKeever P, Young AB (1987) Imaging of a glioma using peripheral benzodiazepine receptor ligands. Proc Natl Acad Sci U S A 84:891–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F et al (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 1):2321–2337

    Article  PubMed  Google Scholar 

  57. Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T et al (1997) PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 50:345–353

    Article  CAS  PubMed  Google Scholar 

  58. Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Meltzer CC et al (2004) PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest 113:981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ (2000) Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 161:102–114

    Article  CAS  PubMed  Google Scholar 

  60. Charbonneau P, Syrota A, Crouzel C, Valois JM, Prenant C, Crouzel M (1986) Peripheral-type benzodiazepine receptors in the living heart characterized by positron emission tomography. Circulation 73:476–483

    Article  CAS  PubMed  Google Scholar 

  61. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J (1994) Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 21:573–581

    Article  CAS  PubMed  Google Scholar 

  62. Banati RB (2002) Visualising microglial activation in vivo. Glia 40:206–217

    Article  PubMed  Google Scholar 

  63. Pappata S, Cornu P, Samson Y, Prenant C, Benavides J, Scatton B et al (1991) PET study of carbon-11-PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. J Nucl Med 32:1608–1610

    CAS  PubMed  Google Scholar 

  64. Petit-Taboué MC, Baron JC, Barré L, Travère JM, Speckel D, Camsonne R et al (1991) Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. Eur J Pharmacol 200:347–351

    Article  PubMed  Google Scholar 

  65. Sette G, Baron JC, Young AR, Miyazawa H, Tillet I, Barré L et al (1993) In vivo mapping of brain benzodiazepine receptor changes by positron emission tomography after focal ischemia in the anesthetized baboon. Stroke 24:2046–2057; discussion 2057–8

    Article  CAS  PubMed  Google Scholar 

  66. Cagnin A, Myers R, Gunn RN, Lawrence AD, Stevens T, Kreutzberg GW et al (2001) In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain 124:2014–2027

    Article  CAS  PubMed  Google Scholar 

  67. Goerres GW, Revesz T, Duncan J, Banati RB (2001) Imaging cerebral vasculitis in refractory epilepsy using [(11)C](R)-PK11195 positron emission tomography. AJR Am J Roentgenol 176:1016–1018

    Article  CAS  PubMed  Google Scholar 

  68. Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K et al (2005) Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler 11:127–134

    Article  CAS  PubMed  Google Scholar 

  69. Hammoud DA, Endres CJ, Chander AR, Guilarte TR, Wong DF, Sacktor NC et al (2005) Imaging glial cell activation with [11C]-R-PK11195 in patients with AIDS. J Neurovirol 11:346–355

    Article  CAS  PubMed  Google Scholar 

  70. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB (2005) Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24:591–595

    Article  PubMed  Google Scholar 

  71. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  CAS  PubMed  Google Scholar 

  72. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643

    Article  CAS  PubMed  Google Scholar 

  73. Hajj-Ali RA, Calabrese LH (2013) Primary angiitis of the central nervous system. Autoimmun Rev 12:463–466

    Article  PubMed  Google Scholar 

  74. Salvarani C, Brown RD, Hunder GG (2012) Adult primary central nervous system vasculitis: an update. Curr Opin Rheumatol 24:46–52

    Article  PubMed  Google Scholar 

  75. Peterson PL, Axford JS, Isenberg D (2005) Imaging in CNS lupus. Best Pract Res Clin Rheumatol 19:727–739

    Article  PubMed  Google Scholar 

  76. McCune WJ, MacGuire A, Aisen A, Gebarski S (1988) Identification of brain lesions in neuropsychiatric systemic lupus erythematosus by magnetic resonance scanning. Arthritis Rheum 31:159–166

    Article  CAS  PubMed  Google Scholar 

  77. Sibbitt WL, Sibbitt RR, Griffey RH, Eckel C, Bankhurst AD (1989) Magnetic resonance and computed tomographic imaging in the evaluation of acute neuropsychiatric disease in systemic lupus erythematosus. Ann Rheum Dis 48:1014–1022

    Article  PubMed  PubMed Central  Google Scholar 

  78. Baum KA, Hopf U, Nehrig C, Stöver M, Schörner W (1993) Systemic lupus erythematosus: neuropsychiatric signs and symptoms related to cerebral MRI findings. Clin Neurol Neurosurg 95:29–34

    Article  CAS  PubMed  Google Scholar 

  79. Cuadrado MJ, Khamashta MA, Ballesteros A, Godfrey T, Simon MJ, Hughes GR (2000) Can neurologic manifestations of Hughes (antiphospholipid) syndrome be distinguished from multiple sclerosis? Analysis of 27 patients and review of the literature. Medicine (Baltimore) 79:57–68

    Article  CAS  Google Scholar 

  80. Miller DH, Buchanan N, Barker G, Morrissey SP, Kendall BE, Rudge P et al (1992) Gadolinium-enhanced magnetic resonance imaging of the central nervous system in systemic lupus erythematosus. J Neurol 239:460–464

    Article  CAS  PubMed  Google Scholar 

  81. Curiel R, Akin EA, Beaulieu G, DePalma L, Hashefi M (2011) PET/CT imaging in systemic lupus erythematosus. Ann N Y Acad Sci 1228:71–80

    Article  PubMed  Google Scholar 

  82. Shapira Y, Weinberger A, Wysenbeek AJ (1996) Lymphadenopathy in systemic lupus erythematosus. Prevalence and relation to disease manifestations. Clin Rheumatol 15:335–338

    Article  CAS  PubMed  Google Scholar 

  83. Stern BJ, Krumholz A, Johns C, Scott P, Nissim J (1985) Sarcoidosis and its neurological manifestations. Arch Neurol 42:909–917

    Article  CAS  PubMed  Google Scholar 

  84. Hoitsma E, Faber CG, Drent M, Sharma OP (2004) Neurosarcoidosis: a clinical dilemma. Lancet Neurol 3:397–407

    Article  PubMed  Google Scholar 

  85. Smith JK, Matheus MG, Castillo M (2004) Imaging manifestations of neurosarcoidosis. AJR Am J Roentgenol 182:289–295

    Article  PubMed  Google Scholar 

  86. Zajicek JP, Scolding NJ, Foster O, Rovaris M, Evanson J, Moseley IF et al (1999) Central nervous system sarcoidosis – diagnosis and management. QJM 92:103–117

    Article  CAS  PubMed  Google Scholar 

  87. Joseph FG, Scolding NJ (2009) Neurosarcoidosis: a study of 30 new cases. J Neurol Neurosurg Psychiatry 80:297–304

    Article  CAS  PubMed  Google Scholar 

  88. Bolat S, Berding G, Dengler R, Stangel M, Trebst C (2009) Fluorodeoxyglucose positron emission tomography (FDG-PET) is useful in the diagnosis of neurosarcoidosis. J Neurol Sci 287:257–259, Elsevier B.V

    Article  CAS  PubMed  Google Scholar 

  89. Dubey N, Miletich RS, Wasay M, Mechtler LL, Bakshi R (2002) Role of fluorodeoxyglucose positron emission tomography in the diagnosis of neurosarcoidosis. J Neurol Sci 205:77–81

    Article  PubMed  Google Scholar 

  90. Kim HW, Won KS, Choi BW, Zeon SK (2010) Cerebral toxoplasmosis in a patient with AIDS on F-18 FDG PET/CT. Nucl Med Mol Imaging 44:75–77

    Article  PubMed  PubMed Central  Google Scholar 

  91. Aide N, Benayoun M, Kerrou K, Khalil A, Cadranel J, Talbot JN (2007) Impact of [18F]-fluorodeoxyglucose ([18F]-FDG) imaging in sarcoidosis: unsuspected neurosarcoidosis discovered by [18F]-FDG PET and early metabolic response to corticosteroid therapy. Br J Radiol 80:e67–e71

    Article  CAS  PubMed  Google Scholar 

  92. Chester W (1930) Über Lipoidgranulomatose. Virchows Arch Pathol Anat Physiol Klin Med 279:561–602

    Article  Google Scholar 

  93. Haroche J, Amoura Z, Dion E, Wechsler B, Costedoat-Chalumeau N, Cacoub P et al (2004) Cardiovascular involvement, an overlooked feature of Erdheim-Chester disease: report of 6 new cases and a literature review. Medicine (Baltimore) 83:371–392

    Article  Google Scholar 

  94. Lachenal F, Cotton F, Desmurs-Clavel H, Haroche J, Taillia H, Magy N et al (2006) Neurological manifestations and neuroradiological presentation of Erdheim-Chester disease: report of 6 cases and systematic review of the literature. J Neurol 253:1267–1277

    Article  PubMed  Google Scholar 

  95. Arnaud L, Malek Z, Archambaud F, Kas A, Toledano D, Drier A et al (2009) 18F-fluorodeoxyglucose-positron emission tomography scanning is more useful in follow-up than in the initial assessment of patients with Erdheim-Chester disease. Arthritis Rheum 60:3128–3138

    Article  PubMed  Google Scholar 

  96. Asabella AN, Cimmino A, Altini C, Notaristefano A, Rubini G (2011) (18)F-FDG positron emission tomography/computed tomography and (99m)Tc-MDP skeletal scintigraphy in a case of Erdheim-Chester disease. Hell J Nucl Med 14:311–312

    PubMed  Google Scholar 

  97. Pereira Neto CC, Roman C, Johnson M, Jagasia M, Martin WH, Delbeke D (2004) Positron emission tomography/computed tomography of a rare xanthogranulomatous process: Erdheim-Chester disease. Mol Imaging Biol 6:63–67

    Article  PubMed  Google Scholar 

  98. Cartes-Zumelzu FW, Stavrou I, Castillo M, Eisenhuber E, Knosp E, Thurnher MM (2004) Diffusion-weighted imaging in the assessment of brain abscesses therapy. AJNR Am J Neuroradiol 25:1310–1317

    PubMed  Google Scholar 

  99. Kim DG, Lee JI, Lee DS, Lee MC, Choi KS, Han DH (1995) 99mTc-HMPAO labeled leukocyte SPECT in intracranial lesions. Surg Neurol 44:338–345

    Article  CAS  PubMed  Google Scholar 

  100. Schmidt KG, Rasmussen JW, Frederiksen PB, Kock-Jensen C, Pedersen NT (1990) Indium-111-granulocyte scintigraphy in brain abscess diagnosis: limitations and pitfalls. J Nucl Med 31:1121–1127

    CAS  PubMed  Google Scholar 

  101. Balachandran S, Husain MM, Adametz JR, Pallin JS, Angtuaco TL, Boyd CM (1987) Uptake of indium-111-labeled leukocytes by brain metastasis. Neurosurgery 20:606–609

    Article  CAS  PubMed  Google Scholar 

  102. Spinelli F, Sara R, Milella M, Ruffini L, Sterzi R, Causarano IR et al (2000) Technetium-99m hexamethylpropylene amine oxime leucocyte scintigraphy in the differential diagnosis of cerebral abscesses. Eur J Nucl Med 27:46–49

    Article  CAS  PubMed  Google Scholar 

  103. Sasaki M, Ichiya Y, Kuwabara Y, Otsuka M, Tahara T, Fukumura T et al (1990) Ringlike uptake of [18F]FDG in brain abscess: a PET study. J Comput Assist Tomogr 14:486–487

    CAS  PubMed  Google Scholar 

  104. Ishii K, Ogawa T, Hatazawa J, Kanno I, Inugami A, Fujita H et al (1993) High L-methyl-[11C]methionine uptake in brain abscess: a PET study. J Comput Assist Tomogr 17:660–661

    Article  CAS  PubMed  Google Scholar 

  105. Meyer MA, Frey KA, Schwaiger M (1993) Discordance between F-18 fluorodeoxyglucose uptake and contrast enhancement in a brain abscess. Clin Nucl Med 18:682–684

    Article  CAS  PubMed  Google Scholar 

  106. Dethy S, Manto M, Kentos A, Konopnicki D, Pirotte B, Goldman S et al (1995) PET findings in a brain abscess associated with a silent atrial septal defect. Clin Neurol Neurosurg 97:349–353

    Article  CAS  PubMed  Google Scholar 

  107. Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Uemura K (1997) Indications for differential diagnosis of nontumor central nervous system diseases from tumors. A positron emission tomography study. J Neuroimaging 7:8–15

    Article  CAS  PubMed  Google Scholar 

  108. Kang K, Lim I, Roh J-K (2007) Positron emission tomographic findings in a tuberculous brain abscess. Ann Nucl Med 21:303–306

    Article  PubMed  Google Scholar 

  109. Tsuyuguchi N, Sunada I, Ohata K, Takami T, Nishio A, Hara M et al (2003) Evaluation of treatment effects in brain abscess with positron emission tomography: comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine. Ann Nucl Med 17:47–51

    Article  PubMed  Google Scholar 

  110. Huang Z, Zuo C, Guan Y, Zhang Z, Liu P, Xue F et al (2008) Misdiagnoses of (11)-choline combined with F-18-FDG PET imaging in brain tumours. Nucl Med Commun 29:354–358

    Article  CAS  PubMed  Google Scholar 

  111. Tan H, Chen L, Guan Y, Lin X (2011) Comparison of MRI, F-18 FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin Nucl Med 36:978–981

    Article  PubMed  Google Scholar 

  112. Mascarenhas NB, Lam D, Lynch GR, Fisher RE (2006) PET imaging of cerebral and pulmonary Nocardia infection. Clin Nucl Med 31:131–133

    Article  PubMed  Google Scholar 

  113. Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A et al (2003) Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873

    Article  CAS  PubMed  Google Scholar 

  114. Park S-H, Lee S-W, Kang D-H, Hwang J-H, Sung J-K, Hwang S-K (2011) The role of f-fluorodeoxyglucose positron emission tomography in the treatment of brain abscess. J Korean Neurosurg Soc 49:278–283

    Article  PubMed  PubMed Central  Google Scholar 

  115. Floeth FW, Pauleit D, Sabel M, Reifenberger G, Stoffels G, Stummer W et al (2006) 18F-FET PET differentiation of ring-enhancing brain lesions. J Nucl Med 47:776–782

    CAS  PubMed  Google Scholar 

  116. McCarthy M, Yuan JB, Campbell A, Lenzo NP, Butler-Henderson K (2008) 18F-fluorodeoxyglucose positron emission tomography imaging in brain tumours: the Western Australia positron emission tomography/cyclotron service experience. J Med Imaging Radiat Oncol 52:564–569

    Article  CAS  PubMed  Google Scholar 

  117. Lau EWF, Drummond KJ, Ware RE, Drummond E, Hogg A, Ryan G et al (2010) Comparative PET study using F-18 FET and F-18 FDG for the evaluation of patients with suspected brain tumour. J Clin Neurosci 17:43–49

    Article  PubMed  Google Scholar 

  118. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653–1659

    PubMed  Google Scholar 

  119. Kim D, Kim CG, Park S (2010) Experience of dual time point brain F-18 FDG PET/CT imaging in patients with infectious disease. Nucl Med Mol Imaging 44:137–142

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK (2008) Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin Microbiol Rev 21:243–261, table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Trivedi R, Saksena S, Gupta RK (2009) Magnetic resonance imaging in central nervous system tuberculosis. Indian J Radiol Imaging 19:256–265

    Article  PubMed  PubMed Central  Google Scholar 

  122. Skoura E, Zumla A, Bomanji J (2015) Imaging in tuberculosis. Int J Infect Dis 32:87–93, International Society for Infectious Diseases

    Article  PubMed  Google Scholar 

  123. Chang JM, Lee HJ, Goo JM, Lee H-Y, Lee JJ, Chung J-K et al (2006) False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol 7:57–69

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sathekge MM, Maes A, Pottel H, Stoltz A, van de Wiele C (2010) Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J 100:598–601

    Article  PubMed  Google Scholar 

  125. Harisankar C, Mittal BR, Bhattacharya A, Singh B (2010) FDG-PET/CT in diagnosis and early response evaluation of extra-pulmonary tuberculosis in a patient with aplastic anemia. J Postgrad Med 56:219–221

    Article  PubMed  Google Scholar 

  126. D’Souza MM, Sharma R, Jaimini A, Panwar P, Bansal A, Tripathi M et al (2012) Metabolic assessment of intracranial tuberculomas using 11C-methionine and 18F-FDG PET/CT. Nucl Med Commun 33:408–414

    Article  PubMed  CAS  Google Scholar 

  127. El Omri H, Hascsi Z, Taha R, Szabados L, El Sabah H, Gamiel A et al (2015) Tubercular meningitis and lymphadenitis mimicking a relapse of Burkitt’s lymphoma on (18)F-FDG-PET/CT: a case report. Case Rep Oncol 8:226–232

    Article  PubMed  PubMed Central  Google Scholar 

  128. Park I-N, Ryu J-S, Shim TS (2008) Evaluation of therapeutic response of tuberculoma using F-18 FDG positron emission tomography. Clin Nucl Med 33:1–3

    Article  CAS  PubMed  Google Scholar 

  129. Chung J-K, Kim YK, Kim S, Lee YJ, Paek S, Yeo JS et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    Article  CAS  PubMed  Google Scholar 

  130. Lewitschnig S, Gedela K, Toby M, Kulasegaram R, Nelson M, O’Doherty M et al (2013) 18F-FDG PET/CT in HIV-related central nervous system pathology. Eur J Nucl Med Mol Imaging 40:1420–1427

    Article  PubMed  Google Scholar 

  131. Wright D, Schneider A, Berger JR (1997) Central nervous system opportunistic infections. Neuroimaging Clin N Am 7:513–525

    CAS  PubMed  Google Scholar 

  132. Velji AM (1986) Leukocytoclastic vasculitis associated with positive HTLV-III serological findings. JAMA 256:2196–2197

    Article  CAS  PubMed  Google Scholar 

  133. Saravanan M, Turnbull IW (2009) Brain: non-infective and non-neoplastic manifestations of HIV. Br J Radiol 82:956–965

    Article  CAS  PubMed  Google Scholar 

  134. Graham CB, Wippold FJ, Pilgram TK, Fisher EJ, Smoker WR (2000) Screening CT of the brain determined by CD4 count in HIV-positive patients presenting with headache. AJNR Am J Neuroradiol 21:451–454

    PubMed  Google Scholar 

  135. Miller RF, Hall-Craggs MA, Costa DC, Brink NS, Scaravilli F, Lucas SB et al (1998) Magnetic resonance imaging, thallium-201 SPET scanning, and laboratory analyses for discrimination of cerebral lymphoma and toxoplasmosis in AIDS. Sex Transm Infect 74:258–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Skiest DJ (2002) Focal neurological disease in patients with acquired immunodeficiency syndrome. Clin Infect Dis 34:103–115

    Article  PubMed  Google Scholar 

  137. Schroeder PC, Post MJD, Oschatz E, Stadler A, Bruce-Gregorios J, Thurnher MM (2006) Analysis of the utility of diffusion-weighted MRI and apparent diffusion coefficient values in distinguishing central nervous system toxoplasmosis from lymphoma. Neuroradiology 48:715–720

    Article  PubMed  Google Scholar 

  138. Gildenberg PL, Gathe JC, Kim JH (2000) Stereotactic biopsy of cerebral lesions in AIDS. Clin Infect Dis 30:491–499

    Article  CAS  PubMed  Google Scholar 

  139. Stenzel W, Pels H, Staib P, Impekoven P, Bektas N, Deckert M (2004) Concomitant manifestation of primary CNS lymphoma and toxoplasma encephalitis in a patient with AIDS. J Neurol 251:764–766

    Article  CAS  PubMed  Google Scholar 

  140. Palestro CJ, Goldsmith SJ (1995) The role of gallium and labeled leukocyte scintigraphy in the AIDS patient. Q J Nucl Med 39:221–230

    CAS  PubMed  Google Scholar 

  141. Kimizuka T, Ozaki Y, Sumi Y (2002) Thallium-201 accumulation in a patient with brain abscess. Ann Nucl Med 16:351–354

    Article  PubMed  Google Scholar 

  142. Licho R, Litofsky NS, Senitko M, George M (2002) Inaccuracy of Tl-201 brain SPECT in distinguishing cerebral infections from lymphoma in patients with AIDS. Clin Nucl Med 27:81–86

    Article  PubMed  Google Scholar 

  143. Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S et al (1993) FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 34:567–575

    CAS  PubMed  Google Scholar 

  144. Villringer K, Jäger H, Dichgans M, Ziegler S, Poppinger J, Herz M et al (1995) Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr 19:532–536

    Article  CAS  PubMed  Google Scholar 

  145. Heald AE, Hoffman JM, Bartlett JA, Waskin HA (1996) Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS 7:337–346

    Article  CAS  PubMed  Google Scholar 

  146. O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS (1997) PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 38:1575–1583

    PubMed  Google Scholar 

  147. Liu Y (2011) Demonstrations of AIDS-associated malignancies and infections at FDG PET-CT. Ann Nucl Med 25:536–546

    Article  PubMed  Google Scholar 

  148. Sathekge M, Goethals I, Maes A, van de Wiele C (2009) Positron emission tomography in patients suffering from HIV-1 infection. Eur J Nucl Med Mol Imaging 36:1176–1184

    Article  PubMed  Google Scholar 

  149. Shirai S, Yabe I, Kano T, Shimizu Y, Sasamori T, Sato K et al (2014) Usefulness of (11)C-methionine-positron emission tomography for the diagnosis of progressive multifocal leukoencephalopathy. J Neurol 261:2314–2318

    Article  CAS  PubMed  Google Scholar 

  150. Stenehjem E, Armstrong WS (2012) Central nervous system device infections. Infect Dis Clin North Am 26:89–110

    Article  PubMed  Google Scholar 

  151. Friedman WA, Vries JK (1980) Percutaneous tunnel ventriculostomy. Summary of 100 procedures. J Neurosurg 53:662–665

    Article  CAS  PubMed  Google Scholar 

  152. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES (2002) Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 51:170–181; discussion 181–2

    Article  PubMed  Google Scholar 

  153. Dasic D, Hanna SJ, Bojanic S, Kerr RSC (2006) External ventricular drain infection: the effect of a strict protocol on infection rates and a review of the literature. Br J Neurosurg 20:296–300

    Article  CAS  PubMed  Google Scholar 

  154. Takeuchi S, Takasato Y, Masaoka H, Hayakawa T, Otani N, Yoshino Y et al (2010) Hemorrhagic encephalitis associated with Epstein-Barr virus infection. J Clin Neurosci 17:153–154

    Article  PubMed  Google Scholar 

  155. Arrese I, Nuñez AP, Rivas JJ, Lobato RD (2004) Delayed brain abscess as a complication of a CSF shunt. Neurocirugia (Astur) 15:472–475

    Article  CAS  Google Scholar 

  156. Thet Y, Myint W, Myint W, Hughes D, Crowe AV, Banerjee A (2008) Ventriculo-peritoneal shunt infection in a patient on hemodialysis. Hemodial Int 12:319–321

    Article  PubMed  Google Scholar 

  157. Kolić Z, Kukuljan M, Bonifačić D, Vukas D (2010) CSF liver pseudocyst as a complication of a ventriculoperitoneal shunt. Wien Klin Wochenschr 122:641–644

    Article  PubMed  Google Scholar 

  158. Khan SA, Gretchel A, Govender H, Hartzenberg B (2009) Brain abscess and granuloma formation as late complications of retained ventricular catheter. Neurol India 57:489–492

    Article  CAS  PubMed  Google Scholar 

  159. Stoodley P, Braxton EE, Nistico L, Hall-Stoodley L, Johnson S, Quigley M et al (2010) Direct demonstration of Staphylococcus biofilm in an external ventricular drain in a patient with a history of recurrent ventriculoperitoneal shunt failure. Pediatr Neurosurg 46:127–132

    Article  PubMed  PubMed Central  Google Scholar 

  160. Medina M, Viglietti AL, Gozzoli L, Lucano A, Ravasi L, Lucignani G et al (2000) Indium-111 labelled white blood cell scintigraphy in cranial and spinal septic lesions. Eur J Nucl Med 27:1473–1480

    Article  CAS  PubMed  Google Scholar 

  161. Wan DQ, Joseph UA, Barron BJ, Caram P, Nguyen AP (2009) Ventriculoperitoneal shunt catheter and cerebral spinal fluid infection initially detected by FDG PET/CT scan. Clin Nucl Med 34:464–465

    Article  PubMed  Google Scholar 

  162. Rehman T, Chohan MO, Yonas H (2011) Diagnosis of ventriculoperitoneal shunt infection using [F-18]-FDG PET: a case report. J Neurosurg Sci 55:161–163

    CAS  PubMed  Google Scholar 

  163. Hamani C, Lozano AM (2006) Hardware-related complications of deep brain stimulation: a review of the published literature. Stereotact Funct Neurosurg 84:248–251

    Article  PubMed  Google Scholar 

  164. Real R, Linhares P, Fernandes H, Rosas MJ, Gago MF, Pereira J et al (2011) Role of Tc-sulesomab immunoscintigraphy in the management of infection following deep brain stimulation surgery. Neurol Res Int 2011:817951

    Article  PubMed  PubMed Central  Google Scholar 

  165. Sundaresan N, Suite ND (1989) Optimal use of the Ommaya reservoir in clinical oncology. Oncology (Williston Park) 3:15–22; discussion 23

    CAS  Google Scholar 

  166. Shapiro WR, Posner JB, Ushio Y, Chemik NL, Young DF (1977) Treatment of meningeal neoplasms. Cancer Treat Rep 61:733–743

    CAS  PubMed  Google Scholar 

  167. Obbens EA, Leavens ME, Beal JW, Lee YY (1985) Ommaya reservoirs in 387 cancer patients: a 15-year experience. Neurology 35:1274–1278

    Article  CAS  PubMed  Google Scholar 

  168. Lishner M, Perrin RG, Feld R, Messner HA, Tuffnell PG, Elhakim T et al (1990) Complications associated with Ommaya reservoirs in patients with cancer. The Princess Margaret Hospital experience and a review of the literature. Arch Intern Med 150:173–176

    Article  CAS  PubMed  Google Scholar 

  169. Mechleb B, Khater F, Eid A, David G, Moorman JP (2003) Late onset Ommaya reservoir infection due to Staphylococcus aureus: case report and review of Ommaya Infections. J Infect 46:196–198

    Article  CAS  PubMed  Google Scholar 

  170. Sampaio ALL, Araújo MFS, Oliveira CACP (2011) New criteria of indication and selection of patients to cochlear implant. Int J Otolaryngol 2011:573968

    PubMed  PubMed Central  Google Scholar 

  171. Yu KC, Hegarty JL, Gantz BJ, Lalwani AK (2001) Conservative management of infections in cochlear implant recipients. Otolaryngol Head Neck Surg 125:66–70

    Article  CAS  PubMed  Google Scholar 

  172. Tambyraja RR, Gutman MA, Megerian CA (2005) Cochlear implant complications: utility of federal database in systematic analysis. Arch Otolaryngol Head Neck Surg 131:245–250

    Article  PubMed  Google Scholar 

  173. Achiques MT, Morant A, Muñoz N, Marco J, Llópez I, Latorre E et al (2010) Cochlear implant complications and failures. Acta Otorrinolaringol Esp 61:412–417

    Article  PubMed  Google Scholar 

  174. Antonelli PJ, Lee JC, Burne RA (2004) Bacterial biofilms may contribute to persistent cochlear implant infection. Otol Neurotol 25:953–957

    Article  PubMed  Google Scholar 

  175. Hirsch BE, Blikas A, Whitaker M (2007) Antibiotic prophylaxis in cochlear implant surgery. Laryngoscope 117:864–867

    Article  PubMed  Google Scholar 

  176. Rubin Grandis J, Branstetter BF, Yu VL (2004) The changing face of malignant (necrotising) external otitis: clinical, radiological, and anatomic correlations. Lancet Infect Dis 4:34–39

    Article  PubMed  Google Scholar 

  177. de Miguel-Martínez I, Ramos-Macías A, Borkoski Barreiro S (2008) Efficacy of heptavalent pneumococcal conjugate vaccine in children with cochlear implant. Acta Otorrinolaringol Esp 59:2–5

    Article  PubMed  Google Scholar 

  178. Rubin LG, Papsin B (2010) Cochlear implants in children: surgical site infections and prevention and treatment of acute otitis media and meningitis. Pediatrics 126:381–391

    Article  PubMed  Google Scholar 

  179. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J et al (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Shpizner BA, Holliday RA, Roland JT, Cohen NL, Waltzman SB, Shapiro WH (1995) Postoperative imaging of the multichannel cochlear implant. AJNR Am J Neuroradiol 16:1517–1524

    CAS  PubMed  Google Scholar 

  181. Hoep LS, Merkus P, van Schie A, Rinkel RNPM, Smit CF (2006) The value of nuclear scans in cochlear implant infections. Eur Arch Otorhinolaryngol 263:895–899

    Article  PubMed  Google Scholar 

  182. Gamaletsou MN, Sipsas NV, Roilides E, Walsh TJ (2012) Rhino-orbital-cerebral mucormycosis. Curr Infect Dis Rep 14:423–434

    Article  PubMed  Google Scholar 

  183. Altini C, Niccoli Asabella A, Ferrari C, Rubini D, Dicuonzo F, Rubini G (2015) (18)F-FDG PET/CT contribution to diagnosis and treatment response of rhino-orbital-cerebral mucormycosis. Hell J Nucl Med 18:68–70

    PubMed  Google Scholar 

  184. Mohindra S, Mohindra S, Gupta R, Bakshi J, Gupta SK (2007) Rhinocerebral mucormycosis: the disease spectrum in 27 patients. Mycoses 50:290–296

    Article  PubMed  Google Scholar 

  185. Howells RC, Ramadan HH (2001) Usefulness of computed tomography and magnetic resonance in fulminant invasive fungal rhinosinusitis. Am J Rhinol 15:255–261

    CAS  PubMed  Google Scholar 

  186. Silverman CS, Mancuso AA (1998) Periantral soft-tissue infiltration and its relevance to the early detection of invasive fungal sinusitis: CT and MR findings. AJNR Am J Neuroradiol 19:321–325

    CAS  PubMed  Google Scholar 

  187. Hot A, Maunoury C, Poiree S, Lanternier F, Viard JP, Loulergue P et al (2011) Diagnostic contribution of positron emission tomography with [18F]fluorodeoxyglucose for invasive fungal infections. Clin Microbiol Infect 17:409–417

    Article  CAS  PubMed  Google Scholar 

  188. Lucente FE, Parisier SC, Chandler JR (1996) Malignant external otitis (Laryngoscope. 1968;78:1257–1294). Laryngoscope 106:805–807

    Article  CAS  PubMed  Google Scholar 

  189. Le Clerc N, Verillaud B, Duet M, Guichard J-P, Herman P, Kania R (2014) Skull base osteomyelitis: incidence of resistance, morbidity, and treatment strategy. Laryngoscope 124:2013–2016

    Article  PubMed  Google Scholar 

  190. Carfrae MJ, Kesser BW (2008) Malignant otitis externa. Otolaryngol Clin North Am 41:537–549, viii–ix

    Article  PubMed  Google Scholar 

  191. Tsikoudas A, Davis BC (2009) Benign necrotizing otitis externa. Ear Nose Throat J 88, E18

    PubMed  Google Scholar 

  192. Patmore H, Jebreel A, Uppal S, Raine CH, McWhinney P (2010) Skull base infection presenting with multiple lower cranial nerve palsies. Am J Otolaryngol 31:376–380

    Article  PubMed  Google Scholar 

  193. Adams A, Offiah C (2012) Central skull base osteomyelitis as a complication of necrotizing otitis externa: imaging findings, complications, and challenges of diagnosis. Clin Radiol 67:e7–e16

    Article  CAS  PubMed  Google Scholar 

  194. Grandis JR, Curtin HD, Yu VL (1995) Necrotizing (malignant) external otitis: prospective comparison of CT and MR imaging in diagnosis and follow-up. Radiology 196:499–504

    Article  CAS  PubMed  Google Scholar 

  195. Sreepada GS, Kwartler JA (2003) Skull base osteomyelitis secondary to malignant otitis externa. Curr Opin Otolaryngol Head Neck Surg 11:316–323

    Article  PubMed  Google Scholar 

  196. Kohut RI, Lindsay JR (1979) Necrotizing (“malignant”) external otitis histopathologic processes. Ann Otol Rhinol Laryngol 88:714–720

    Article  CAS  PubMed  Google Scholar 

  197. Sando I, Harada T, Okano Y, Saito R, Caparosa RJ (1981) Temporal bone histopathology of necrotizing external otitis. A case report. Ann Otol Rhinol Laryngol 90:109–115

    Article  CAS  PubMed  Google Scholar 

  198. Chang PC, Fischbein NJ, Holliday RA (2003) Central skull base osteomyelitis in patients without otitis externa: imaging findings. AJNR Am J Neuroradiol 24:1310–1316

    PubMed  Google Scholar 

  199. Strashun AM, Nejatheim M, Goldsmith SJ (1984) Malignant external otitis: early scintigraphic detection. Radiology 150:541–545

    Article  CAS  PubMed  Google Scholar 

  200. Stokkel MP, Takes RP, van Eck-Smit BL, Baatenburg de Jong RJ (1997) The value of quantitative gallium-67 single-photon emission tomography in the clinical management of malignant external otitis. Eur J Nucl Med 24:1429–1432

    Article  CAS  PubMed  Google Scholar 

  201. Redleaf MI, Angeli SI, McCabe BF (1994) Indium 111-labeled white blood cell scintigraphy as an unreliable indicator of malignant external otitis resolution. Ann Otol Rhinol Laryngol 103:444–448

    Article  CAS  PubMed  Google Scholar 

  202. Galletti F, Cammaroto G, Galletti B, Quartuccio N, Di Mauro F, Baldari S (2015) Technetium-99m ((99m)Tc)-labelled sulesomab in the management of malignant external otitis: is there any role? Eur Arch Otorhinolaryngol 272:1377–1382, Springer, Berlin Heidelberg

    Article  PubMed  Google Scholar 

  203. Termaat MF, Raijmakers PGHM, Scholten HJ, Bakker FC, Patka P, Haarman HJTM (2005) The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am 87:2464–2471

    Article  CAS  PubMed  Google Scholar 

  204. Glaudemans AWJM, Quintero AM, Signore A (2012) PET/MRI in infectious and inflammatory diseases: will it be a useful improvement? Eur J Nucl Med Mol Imaging 39:745–749

    Article  PubMed  PubMed Central  Google Scholar 

  205. Lorenzen J, Buchert R, Bohuslavizki KH (2001) Value of FDG PET in patients with fever of unknown origin. Nucl Med Commun 22:779–783

    Article  CAS  PubMed  Google Scholar 

  206. Bleeker-Rovers CP, Vos FJ, de Kleijn EMHA, Mudde AH, Dofferhoff TSM, Richter C et al (2007) A prospective multicenter study on fever of unknown origin: the yield of a structured diagnostic protocol. Medicine (Baltimore) 86:26–38

    Article  Google Scholar 

  207. Balink H, Collins J, Bruyn GA, Bruyn G, Gemmel F (2009) F-18 FDG PET/CT in the diagnosis of fever of unknown origin. Clin Nucl Med 34:862–868

    Article  PubMed  Google Scholar 

  208. Vanderschueren S, Del Biondo E, Ruttens D, Van Boxelaer I, Wauters E, Knockaert DDC (2009) Inflammation of unknown origin versus fever of unknown origin: two of a kind. Eur J Intern Med 20:415–418

    Article  PubMed  Google Scholar 

  209. Vos FJ, Bleeker-Rovers CP, Sturm PD, Krabbe PFM, van Dijk APJ, Cuijpers MLH et al (2010) 18F-FDG PET/CT for detection of metastatic infection in gram-positive bacteremia. J Nucl Med 51:1234–1240

    Article  PubMed  Google Scholar 

  210. Tewari A, Padma S, Sundaram PS (2012) The diagnostic role of 18-fluorodeoxyglucocose-positron emission tomography/computed tomography in occult bacteremia searching underlying primary disease. Ann Indian Acad Neurol 15:336–338

    Article  PubMed  PubMed Central  Google Scholar 

  211. Akiyama K, Karaki M, Samukawa Y, Mori N (2013) Blindness caused by septic superior ophthalmic vein thrombosis in a Lemierre Syndrome variant. Auris Nasus Larynx 40:493–496

    Article  PubMed  Google Scholar 

  212. Tseng J-R, Lin C-W, Chen S-H, Yen T-H, Lin P-Y, Lee M-H et al (2015) Clinical usefulness of 18F-FDG PET/CT for the detection of infections of unknown origin in patients undergoing maintenance hemodialysis. J Nucl Med 56:681–687

    Article  PubMed  Google Scholar 

  213. Goddard AJP, Tan G, Becker J (2005) Computed tomography angiography for the detection and characterization of intra-cranial aneurysms: current status. Clin Radiol 60:1221–1236

    Article  CAS  PubMed  Google Scholar 

  214. Cruz-Flores S (2014) Neurologic complications of valvular heart disease. Handb Clin Neurol 119:61–73

    Article  PubMed  Google Scholar 

  215. Goulenok T, Klein I, Mazighi M, Messika-Zeitoun D, Alexandra JF, Mourvillier B et al (2013) Infective endocarditis with symptomatic cerebral complications: contribution of cerebral magnetic resonance imaging. Cerebrovasc Dis 35:327–336

    Article  CAS  PubMed  Google Scholar 

  216. Bruun NE, Habib G, Thuny F, Sogaard P (2014) Cardiac imaging in infectious endocarditis. Eur Heart J 35:624–632

    Article  PubMed  Google Scholar 

  217. Van Riet J, Hill EE, Gheysens O, Dymarkowski S, Herregods M-C, Herijgers P et al (2010) (18)F-FDG PET/CT for early detection of embolism and metastatic infection in patients with infective endocarditis. Eur J Nucl Med Mol Imaging 37:1189–1197

    Article  PubMed  Google Scholar 

  218. Kestler M, Muñoz P, Rodríguez-Créixems M, Rotger A, Jimenez-Requena F, Mari A et al (2014) Role of 18F-FDG PET in patients with infectious endocarditis. J Nucl Med 55:1093–1098

    Article  CAS  PubMed  Google Scholar 

  219. Asmar A, Ozcan C, Diederichsen ACP, Thomassen A, Gill S (2014) Clinical impact of 18F-FDG-PET/CT in the extra cardiac work-up of patients with infective endocarditis. Eur Heart J Cardiovasc Imaging 15:1013–1019

    Article  PubMed  Google Scholar 

  220. Özcan C, Asmar A, Gill S, Thomassen A, Diederichsen ACP (2013) The value of FDG-PET/CT in the diagnostic work-up of extra cardiac infectious manifestations in infectious endocarditis. Int J Cardiovasc Imaging 29:1629–1637

    Article  PubMed  Google Scholar 

  221. Orvin K, Goldberg E, Bernstine H, Groshar D, Sagie A, Kornowski R et al (2015) The role of FDG-PET/CT imaging in early detection of extra-cardiac complications of infective endocarditis. Clin Microbiol Infect 21:69–76

    Article  CAS  PubMed  Google Scholar 

  222. Xing XW, Zhang JT, Zhu F, Ma L, Yin DY, Jia WQ et al (2012) Comparison of diffusion-weighted MRI with 18F-fluorodeoxyglucose-positron emission tomography/CT and electroencephalography in sporadic Creutzfeldt-Jakob disease. J Clin Neurosci 19:1354–1357, Elsevier Ltd

    Article  PubMed  Google Scholar 

  223. Caobelli F, Cobelli M, Pizzocaro C, Pavia M, Magnaldi S, Guerra UP (2014) The role of neuroimaging in evaluating patients affected by Creutzfeldt-Jakob disease: a systematic review of the literature. J Neuroimaging 6:1–12

    Google Scholar 

  224. Thomas A, Klein JC, Galldiks N, Hilker R, Grond M, Jacobs AH (2006) Multitracer PET imaging in Heidenhain variant of Creutzfeldt-Jakob disease. J Neurol 253:258–260

    Article  CAS  PubMed  Google Scholar 

  225. Macfarlane RG, Wroe SJ, Collinge J, Yousry TA, Jäger HR (2007) Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 78:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kao CH, Wang SJ, Mak SC, Shian WJ, Chi CS (1994) Viral encephalitis in children: detection with technetium-99m HMPAO brain single-photon emission CT and its value in prediction of outcome. AJNR Am J Neuroradiol 15:1369–1373

    CAS  PubMed  Google Scholar 

  227. San Pedro EC, Mountz JM, Liu HG, Deutsch G (1998) Postinfectious cerebellitis: clinical significance of Tc-99m HMPAO brain SPECT compared with MRI. Clin Nucl Med 23:212–216

    Article  CAS  PubMed  Google Scholar 

  228. Nara T, Nozaki H, Nishimoto H (1990) Brain perfusion in acute encephalitis: relationship to prognosis studied using SPECT. Pediatr Neurol 6:422–424

    Article  CAS  PubMed  Google Scholar 

  229. Daaboul Y, Vern BA, Blend MJ (1998) Brain SPECT imaging and treatment with IVIg in acute post-infectious cerebellar ataxia: case report. Neurol Res 20:85–88

    CAS  PubMed  Google Scholar 

  230. Hirayama K, Sakazaki H, Murakami S, Yonezawa S, Fujimoto K, Seto T et al (1999) Sequential MRI, SPECT and PET in respiratory syncytial virus encephalitis. Pediatr Radiol 29:282–286

    Article  CAS  PubMed  Google Scholar 

  231. Park JW, Choi YB, Lee KS (2004) Detection of acute Epstein Barr virus cerebellitis using sequential brain HMPAO-SPECT imaging. Clin Neurol Neurosurg 106:118–121

    Article  PubMed  Google Scholar 

  232. Anderson NE, Barber PA (2008) Limbic encephalitis – a review. J Clin Neurosci 15:961–971

    Article  CAS  PubMed  Google Scholar 

  233. Gast H, Schindler K, Z’graggen WJ, Hess CW (2010) Improvement of non-paraneoplastic voltage-gated potassium channel antibody-associated limbic encephalitis without immunosuppressive therapy. Epilepsy Behav 17:555–557

    Article  PubMed  Google Scholar 

  234. Ances BM, Vitaliani R, Taylor RA, Liebeskind DS, Voloschin A, Houghton DJ et al (2005) Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 128:1764–1777

    Article  PubMed  PubMed Central  Google Scholar 

  235. Wong KK, Tolia B, Bohnen N (2008) Chronic sequelae of herpes simplex encephalitis demonstrated on interictal F-18 FDG PET/CT. Clin Nucl Med 33:443–444

    Article  PubMed  Google Scholar 

  236. Meyer MA, Hubner KF, Raja S, Hunter K, Paulsen WA (1994) Sequential positron emission tomographic evaluations of brain metabolism in acute herpes encephalitis. J Neuroimaging 4:104–105

    Article  CAS  PubMed  Google Scholar 

  237. Cistaro A, Caobelli F, Quartuccio N, Fania P, Pagani M (2014) Uncommon 18F-FDG-PET/CT findings in patients affected by limbic encephalitis: hyper-hypometabolic pattern with double antibody positivity and migrating foci of hypermetabolism. Clin Imaging 39:1–5, Elsevier Inc

    Google Scholar 

  238. Wang HC, Zhao J, Zuo CT, Zhang ZW, Xue FP, Liu P et al (2009) Encephalitis depicted by a combination of C-11 acetate and F-18 FDG PET/CT. Clin Nucl Med 34:952–954

    Article  PubMed  Google Scholar 

  239. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Noguchi T, Kawasaki T, Tanaka A, Yasuda S, Goto Y, Ishihara M et al (2014) High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol 63:989–999

    Article  PubMed  Google Scholar 

  241. Jarrett BR, Correa C, Ma KL, Louie AY (2010) In vivo mapping of vascular inflammation using multimodal imaging. PLoS One 5:2–9

    Article  CAS  Google Scholar 

  242. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114:1852–1866

    Article  CAS  PubMed  Google Scholar 

  243. Tuzcu EM, Schoenhagen P (2003) Acute coronary syndromes, plaque vulnerability, and carotid artery disease: the changing role of atherosclerosis imaging. J Am Coll Cardiol 42:1033–1036

    Article  PubMed  Google Scholar 

  244. Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ (2005) Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 46:937–954

    Article  PubMed  Google Scholar 

  245. Fayad ZA (2001) The assessment of the vulnerable atherosclerotic plaque using MR imaging: a brief review. Int J Cardiovasc Imaging 17:165–177

    Article  CAS  PubMed  Google Scholar 

  246. Choudhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA (2002) MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 22:1065–1074

    Article  CAS  PubMed  Google Scholar 

  247. Bhatia V, Bhatia R, Dhindsa S, Dhindsa M (2003) Imaging of the vulnerable plaque: new modalities. South Med J 96:1142–1147

    Article  PubMed  Google Scholar 

  248. Ripa RS, Kjær A (2015) Imaging atherosclerosis with hybrid positron emission tomography/magnetic resonance imaging. Biomed Res Int 2015:914516, Hindawi Publishing Corporation

    Article  PubMed  PubMed Central  Google Scholar 

  249. Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A (2001) F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med 26:314–319

    Article  CAS  PubMed  Google Scholar 

  250. Mizoguchi M, Tahara N, Tahara A, Nitta Y, Kodama N, Oba T et al (2011) Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging 4:1110–1118

    Article  PubMed  Google Scholar 

  251. Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    Article  CAS  PubMed  Google Scholar 

  252. Graebe M, Pedersen SF, Borgwardt L, Højgaard L, Sillesen H, Kjaer A (2009) Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET). Eur J Vasc Endovasc Surg 37:714–721

    Article  CAS  PubMed  Google Scholar 

  253. Pedersen SF, Graebe M, Fisker Hag AM, Højgaard L, Sillesen H, Kjaer A (2010) Gene expression and 18FDG uptake in atherosclerotic carotid plaques. Nucl Med Commun 31:423–429

    CAS  PubMed  Google Scholar 

  254. Annovazzi A, Bonanno E, Arca M, Alessandria CD, Marcoccia A, Spagnoli LG et al (2006) Original article. Eur J Nucl Med Mol Imaging 33:117–126

    Article  CAS  PubMed  Google Scholar 

  255. Elmaleh D, Narula J, Babich JW, Petrov A, Fischman AJ, Khaw B et al (1998) Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99m Tc-labeled diadenosine tetraphosphates. Proc Natl Acad Sci U S A 95:691–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Tepe G, Duda SH, Meding J, Brehme U, Ritter J, Hanke H et al (2001) Tc-99m-labeled endothelin derivative for imaging of experimentally induced atherosclerosis. Atherosclerosis 157:383–392

    Article  CAS  PubMed  Google Scholar 

  257. Glaudemans AWJM, Bonanno E, Galli F, Zeebregts CJ, De Vries EFJ, Koole M et al (2014) In vivo and in vitro evidence that 99m Tc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Eur J Nucl Med Mol Imaging 41:1710–1719

    Article  CAS  PubMed  Google Scholar 

  258. Luehmann HP, Pressly ED, Detering L, Wang C, Pierce R, Woodard PK et al (2014) PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. J Nucl Med 55:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Bigalke B, Phinikaridou A, Andia ME, Cooper MS, Schuster A, Wurster T et al (2014) PET/CT and MR imaging biomarker of lipid-rich plaques using [64Cu]-labeled scavenger receptor (CD68-Fc). Int J Cardiol 177:287–291, Elsevier Ireland Ltd

    Article  PubMed  Google Scholar 

  260. Broisat A, Toczek J, Dumas LS, Ahmadi M, Bacot S, Perret P et al (2014) Imaging is a sensitive and reproducible tool for the detection of inflamed atherosclerotic lesions in mice. J Nucl Med 55:1678–1685

    Article  CAS  PubMed  Google Scholar 

  261. Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, Figueiredo J et al (2009) 18F-4V for PET-CT imaging of VCAM-1 expression in inflammatory atherosclerosis. JACC Cardiovasc Imaging 2:1213–1222

    Article  PubMed  PubMed Central  Google Scholar 

  262. Tahara N, Mukherjee J, De Haas HJ, Petrov AD, Tawakol A, Haider N et al (2014) 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med 20:215–219

    Article  CAS  PubMed  Google Scholar 

  263. Li X, Bauer W, Israel I, Kreissl MC, Weirather J, Richter D et al (2014) Positron emission tomography for noninvasive characterization of vulnerable plaques. Arterioscler Thromb Vasc Biol 34:1661–1667

    Article  CAS  PubMed  Google Scholar 

  264. Kircher MF, Grimm J, Swirski FK, Libby P, Gerszten RE, Allport JR et al (2008) Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation 117:388–395

    Article  PubMed  PubMed Central  Google Scholar 

  265. Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK et al (2003) Atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108:3134–3139

    Article  CAS  PubMed  Google Scholar 

  266. Johnson LL, Schofield L, Donahay T, Narula N, Narula J (2005) V imaging for in vivo detection of atherosclerotic lesions in porcine coronary arteries. J Nucl Med 46:1186–1194

    PubMed  Google Scholar 

  267. Isobe S, Tsimikas S, Zhou J, Fujimoto S, Sarai M, Branks MJ et al (2006) Noninvasive imaging of atherosclerotic lesions in apolipoprotein E – deficient and low-density-lipoprotein receptor – deficient mice with annexin A5. J Nucl Med 47:1497–1506

    CAS  PubMed  Google Scholar 

  268. Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12:177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Razavian M, Marfatia R, Mongue-din H, Tavakoli S, Sinusas AJ (2011) Integrin targeted imaging of inflammation in vascular remodeling. Arterioscler Thromb Vasc Biol 31:2820–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Golestani R, Zeebregts CJ, Terwisscha van Scheltinga AGT, Lub-de Hooge MN, van Dam GM, Glaudemans AWJM et al (2013) Feasibility of vascular endothelial growth factor imaging in human atherosclerotic plaque using (89)Zr-bevacizumab positron emission tomography. Mol Imaging 12:235–243

    CAS  PubMed  Google Scholar 

  271. Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S et al (2014) PET/CT imaging of integrin αvβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging 7:178–187

    Article  PubMed  Google Scholar 

  272. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47

    Google Scholar 

  273. Narula J, Nakano M, Virmani R, Kolodgie F, Petersen R, Newcomb R et al (2013) Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 61:1041–1051

    Article  PubMed  PubMed Central  Google Scholar 

  274. New SEP, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K et al (2013) Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res 113:72–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34:724–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C et al (2011) In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med 52:362–368

    Article  PubMed  Google Scholar 

  277. Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM et al (2012) Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 59:1539–1548

    Article  CAS  PubMed  Google Scholar 

  278. Dweck MR, Jenkins WSA, Vesey AT, Pringle MAH, Chin CWL, Malley TS et al (2014) 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ Cardiovasc Imaging 7:371–378

    Article  PubMed  Google Scholar 

  279. Cocker MS, Ardle M, Bch MB, Spence JD, Lum C, Hammond RR et al (2012) Imaging atherosclerosis with hybrid [18F] fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see. J Nucl Cardiol 19:1211–1225

    Article  PubMed  PubMed Central  Google Scholar 

  280. Quirce R, Martínez-Rodríguez I, Banzo I, Jiménez-Bonilla J, Martínez-Amador N, Ibáñez-Bravo S et al (2015) New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results. Clin Physiol Funct Imaging 2015 Jul 3. doi: 10.1111/cpf.12254. [Epub ahead of print]

    Google Scholar 

  281. Fernández-Ortiz A, Jiménez-Borreguero LJ, Peñalvo JL, Ordovás JM, Mocoroa A, Fernández-Friera L et al (2013) The Progression and Early detection of Subclinical Atherosclerosis (PESA) study: rationale and design. Am Heart J 166:990–998

    Article  PubMed  Google Scholar 

  282. Rischpler C, Nekolla SG, Beer AJ (2013) PET/MR imaging of atherosclerosis: initial experience and outlook. Am J Nucl Med Mol Imaging 3:393–396

    PubMed  PubMed Central  Google Scholar 

  283. Pedersen SF, Ludvigsen TP, Johannesen HH, Löfgren J, Ripa RS, Hansen AE et al (2014) Feasibility of simultaneous PET/MR in diet-induced atherosclerotic minipig: a pilot study for translational imaging. Am J Nucl Med Mol Imaging 4:448–458

    PubMed  PubMed Central  Google Scholar 

  284. Majmudar MD, Yoo J, Keliher EJ, Truelove J, Iwamoto Y, Sena B et al (2013) Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res 112:755–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Folke Pedersen S, Vikjær Sandholt B, Høgild Keller S, Espe Hansen A, Ettrup Clemmensen A, Sillesen H et al (2015) 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol 35:1696–1703

    Article  CAS  Google Scholar 

  286. Wu C1, Li F, Niu G, Chen X (2013) PET imaging of inflammation biomarkers. Theranostics 3:448–466

    Google Scholar 

  287. De Tiège X, Van Bogaert P, Aeby A, Salmon I, Parpal H, Poppe AY, Maris C, Lanthier S (2011) Primary angiitis of the central nervous system: neurologic deterioration despite treatment. Pediatr 127

    Google Scholar 

  288. Harkirat S, Anana SS, Indrajit LK, Dash AK (2008) Pictorial essay: PET/CT in tuberculosis. Indian J Radiol Imaging 18:141–147

    Google Scholar 

  289. Orbay H, Hong H, Zhang Y, Cai W (2013) Positron emission tomography imaging of atherosclerosis. Theranostics 3:894–902

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Anna Erba MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sollini, M., Boni, R., Lazzeri, E., Erba, P.A. (2016). PET/CT and PET/MRI in Neurology: Infection/Inflammation. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics