Cyclic Carbon Polyynes

  • Lorentz Jäntschi
  • Sorana D. BolboacăEmail author
  • Dusanka Janezic
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)


Monocyclic rings with even carbon atoms, from 6 to 24, were studied using five restricted Hartree–Fock computational refinements (STO-3G, 3-21G, 6-31G*, RI-MP2/6-31G*, and RI-MP2/6-311G*) in order to identify stable polyyne rings. Polyyne rings with 24 carbon atoms were revealed to be stable, and a crossed cyclic polyyne, with 4 such rings, was designed in order to evaluate its condensed state stability. Density functional theory calculation was performed on this nanostructure. The study predicted stable monocyclic polyyne for a number of C atoms equal or higher than 16. The distance between carbon atoms followed an exponential decay to a limit value very near to the distance in C24 polyyne, sustaining its stability. The condensed 4C24 polyyne seemed to be stable, with a sum of bond order per atom of 3.78. The total energy value calculation leads to the conclusion that condensation by crossing the rings failed to provide supplementary stabilization, but also did not induce destabilization. The theoretical IR spectrum as well as the thermodynamic parameters of 4C24 polyyne was rationalized from a molecular dynamics study.


Cyclic polyyne Condensation Computational approach Quantum chemistry 


  1. Anderson BD (2012) Cyclic polyynes as examples of the quantum mechanical particle on a ring. J Chem Educ 89:724–727CrossRefGoogle Scholar
  2. Balasubramanian K, Randi M (1982) The characteristic polynomials of structures with pending bond. Theor Chim Acta (Berl) 61:307–323CrossRefGoogle Scholar
  3. Boehm HP, Clauss A, Fischer GO, Hofmann U (1962) Das Adsorptionsverhalten sehr dünner Kohlenstoffolien. Z Anorg Allg Chem 316:119–127CrossRefGoogle Scholar
  4. Bohlmann F (1951a) Polyacetylenverbindungen I. Darstellung von Triacetylen-Verbindungen. Angew Chem 63:218CrossRefGoogle Scholar
  5. Bohlmann F (1951b) Konstitution und Lichtabsorption II. Diacetylen-Verbindungen. Chem Ber 84:545–546CrossRefGoogle Scholar
  6. Bohlmann F (1951c) Konstitution und Lichtabsorption III. Polyacetylenverbindungen. Chem Ber 84:785–794CrossRefGoogle Scholar
  7. Bohlmann F (1953) Polyacetylenverbindungen IV. Darstellung von Di-tert.-butyl-polyacetylenen. Chem Ber 86:657–667CrossRefGoogle Scholar
  8. Bohlmann F (1955) The naturally occurring polyacetylene compounds. Angew Chem 67:389–394CrossRefGoogle Scholar
  9. Bohlmann F, Mannhardt H-J, Viehe H-G (1955) Polyacetylenverbindungen VII. Synthese des Polyinketons aus Artemisia vulgaris. Chem Ber 88:361–370CrossRefGoogle Scholar
  10. Bohlmann F, Bornowski H, Arndt C (1962) Natürlich vorkommende Acetylenverbindungen. Fortschr Chem Forsch 4:138–272Google Scholar
  11. Bolboacă S, Jäntschi L (2007) How good the characteristic polynomial can be for correlations? Int J Mol Sci 8(4):335–345CrossRefGoogle Scholar
  12. Bunz UHF, Rubin Y, Tobe Y (1999) Polyethynylated cyclic π-systems: scaffoldings for novel two and three-dimensional carbon networks. Chem Soc Rev 28:107–119CrossRefGoogle Scholar
  13. Cataldo F (ed) (2006) Polyynes: synthesis, properties and applications. CRC Press, Boca RatonGoogle Scholar
  14. Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys Today 52:22–28CrossRefGoogle Scholar
  15. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728CrossRefGoogle Scholar
  16. Dobrowolski JC, Mazurek AP (2001) On the qualitative theoretical NMR chemical shifts of model carbyne catenanes and knots. Chem Phys Lett 348:60–66CrossRefGoogle Scholar
  17. Eastmond R, Johnson TR, Walton DRM (1972) Silylation as a protective method for terminal alkynes in oxidative couplings: a general synthesis of the parent polyynes H(C ≡ C)nH (n = 4–10, 12). Tetrahedron 28:4601–4616CrossRefGoogle Scholar
  18. Fock VA (1930a) Approximation method for solving the quantum mechanical many-body problem. Z Phys 61:126–148CrossRefGoogle Scholar
  19. Fock VA (1930b) Self consistent field with exchange for sodium. Z Phys 62:795–805CrossRefGoogle Scholar
  20. Gorjizadeh N, Farajian AA, Kawazoe Y (2011) Non-coherent transport in carbon chains. J Phys Condens Matter 23:75301CrossRefGoogle Scholar
  21. Hartree DR (1928a) The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Math Proc Camb 24:89–110CrossRefGoogle Scholar
  22. Hartree DR (1928b) The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Math Proc Camb 24:111–132CrossRefGoogle Scholar
  23. Hartree DR, Hartree W (1935) Self-consistent field, with exchange, for beryllium. Proc R Soc London 150:9–33CrossRefGoogle Scholar
  24. Hehre WJ, Stewart RF, Pople JA (1969) Self-consistent molecular-orbital methods I. Use of gaussian expansions of slater-type atomic orbitals. J Chem Phys 51:2657–2664CrossRefGoogle Scholar
  25. Ivanciuc O, Ivanciuc T, Diudea MV (1999) Polynomials and spectra of molecular graphs. Rom Chem Q Rev 7(1):41–67Google Scholar
  26. Jäntschi L (2013) General chemistry course. AcademicDirect, Cluj-NapocaGoogle Scholar
  27. Jäntschi L (2014) Anderson darling statistics online calculator.
  28. Jäntschi L, Bolboacă SD, Furdui CM (2009) Characteristic and counting polynomials: modelling nonane isomers properties. Mol Simul 35(3):220–227CrossRefGoogle Scholar
  29. Jones JH (2003) Sir Ewart Ray Herbert Jones 16 March 1911–7 May 2002 Elected FRS 1950. Biogr Mems Fell R Soc 49:263–282CrossRefGoogle Scholar
  30. Kealy TJ, Pauson PL (1951) A new type of organo-iron compound. Nature 168:1039–1040CrossRefGoogle Scholar
  31. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  32. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  33. Lagow RJ, Kampa JJ, Han-Chao W, Battle SL, Genge JW, Laude DA, Harper CJ, Bau R, Stevens RC, Haw JF, Munson E (1995) Synthesis of linear acetylenic carbon: the “sp” carbon allotrope. Science 267:362–367CrossRefGoogle Scholar
  34. Li P (2012) DFT studies on configurations, stabilities, and IR spectra of neutral carbon clusters. J At Mol Sci 3:308–322Google Scholar
  35. McCarthy MC, Chen W, Travers MJ, Thaddeus P (2000) Microwave spectra of 11 polyyne carbon chains. Astrophys J 129:611–623CrossRefGoogle Scholar
  36. McNaughton D, Bruget DN (1992) The high-resolution infrared spectrum of diacetylene and structures of diacetylene, triacetylene and dicyanoacetylene. J Mol Struct 273:11–25CrossRefGoogle Scholar
  37. Moller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  38. Myers EW (1986) An O(ND) Difference algorithm and its variations [online]. Accessed 8 Mar 2015. Available from:
  39. Pierre H, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  40. Smith PPK, Buseck PR (1982) Carbyne forms of carbon: do they exist? Science 216:984–986CrossRefGoogle Scholar
  41. Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42CrossRefGoogle Scholar
  42. Wang C, Guo ZX, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141CrossRefGoogle Scholar
  43. Wang A, Li L, Wang X, Bu H, Zhao M (2014) Graphyne-based carbon allotropes with tunable properties: from dirac fermion to semiconductor. Diam Relat Mater 41:65–72CrossRefGoogle Scholar
  44. Zhang Y, Su Y, Wang L, Kong ESW, Chen X, Zhang Y (2011) A one-dimensional extremely covalent material: monatomic carbon linear chain. Nanoscale Res Lett 6:1–4Google Scholar
  45. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lorentz Jäntschi
    • 1
    • 2
    • 3
    • 4
  • Sorana D. Bolboacă
    • 3
    • 5
    Email author
  • Dusanka Janezic
    • 6
  1. 1.Department of Physics and ChemistryTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Institute for Doctoral StudiesBabeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.University of Agricultural Science and Veterinary Medicine Cluj-NapocaCluj-NapocaRomania
  4. 4.Department of ChemistryUniversity of OradeaOradeaRomania
  5. 5.Department of Medical Informatics and BiostatisticsIuliu Haţieganu University of Medicine and PharmacyCluj-NapocaRomania
  6. 6.Natural Sciences and Information Technologies, Faculty of MathematicsUniversity of PrimorskaKoperSlovenia

Personalised recommendations