Tetrahedral Nanoclusters

  • Csaba L. NagyEmail author
  • Katalin Nagy
  • Mircea V. Diudea
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)


Conserving the sp 2 hybridization of carbon atoms in tetrahedral arrangements is possible in both closed and opened nanostructures. Between the two classes, a structural relationship exists, and they can be easily transformed into each other to facilitate design of complex highly symmetric clusters. A classification of fullerenes with tetrahedral symmetry is here provided, and the corresponding zigzag and armchair tetrapodal nanotube junctions are discussed in detail.


Isolate Pentagon Rule Stagger Conformation Periodic Minimal Surface Endohedral Metallofullerenes Octagonal Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



CL Nagy acknowledges the financial support offered by the Babes-Bolyai University through Grant for Young Researchers GTC_34050/2013.

K Nagy acknowledges the financial support of the Sectorial Operational Program for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the project number POSDRU/159/1.5/S/132400 with the title “Young successful researchers – professional development in an international and interdisciplinary environment”.


  1. Balaban AT, Bean DE, Fowler PW (2010) Patterns of ring current in coronene isomers. Acta Chim Slov 57:507–512Google Scholar
  2. Borštnik U, Hodošček M, Janežič D, Lukovits I (2005) Electronic structure properties of carbon nanotubes obtained by density functional calculations. Chem Phys Lett 411:384–388CrossRefGoogle Scholar
  3. Brinkmann G, Delgado Friedrichs O, Lisken S, Peeters A, Van Cleemput N (2010) CaGe – a virtual environment for studying some special classes of plane graphs – an update. MATCH Commun Math Comput Chem 63:533–552Google Scholar
  4. Campbell EEB, Fowler PW, Mitchell D, Zerbetto F (1996) Increasing cost of pentagon adjacency for larger fullerenes. Chem Phys Lett 250:544–548CrossRefGoogle Scholar
  5. Chen Z, Jiao H, Buhl M, Hirsch A, Thiel W (2001a) The 2(N + 1)2 rule for spherical aromaticity: further validation. J Mol Model 7:161–163Google Scholar
  6. Chen Z, Jiao H, Buhl M, Hirsch A, Thiel W (2001b) Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues. Theor Chem Accounts 106:352–363CrossRefGoogle Scholar
  7. Cheng W, Li QS, Tang AC (1999) Vibrational spectra of tetrahedral fullerenes. J Mol Spectrosc 193:1–6CrossRefGoogle Scholar
  8. Cyrański MK, Havenith RWA, Dobrowolski MA, Gray BR, Krygowski TM, Fowler PW, Jenneskens LW (2007) The phenalenyl motif: a magnetic chameleon. Chem Eur J 13:2201–2207CrossRefGoogle Scholar
  9. Diaz-Tendero S, Alcami M, Martin F (2003) Theoretical study of ionization potentials and dissociation energies of Cn q+ fullerenes (n = 50–60, q = 0, 1 and 2). J Chem Phys 119:5545–5557CrossRefGoogle Scholar
  10. Diaz-Tendero S, Martin F, Alcami M (2005) Structure and electronic properties of fullerenes C52 q+: is C52 2+ an exception to the pentagon adjacency penalty rule? ChemPhysChem 6:92–100CrossRefGoogle Scholar
  11. Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  12. Diudea MV, Nagy CL (2012) C20-related structures: diamond D5. Diam Relat Mater 23:105–108CrossRefGoogle Scholar
  13. Diudea MV, Nagy CL (2013) Diamond D5. In: Diudea MV, Nagy CL (eds) Diamond and related nanostructures, vol 6, Carbon materials: chemistry and physics. Springer, Dordrecht, pp 91–106CrossRefGoogle Scholar
  14. Diudea MV, Szefler B (2012) Nanotube junctions and the genus of multi-tori. Phys Chem Chem Phys 14:8111–8115CrossRefGoogle Scholar
  15. Diudea MV, Nagy CL, Ilic A (2011) Diamond D5, a novel class of carbon allotropes. In: Putz MV (ed) Carbon bonding and structures, vol 5, Carbon materials: chemistry and physics. Springer, Dordrecht, pp 273–289CrossRefGoogle Scholar
  16. Diudea MV, Nagy CL, Bende A (2012) On diamond D5. Struct Chem 23:981–986CrossRefGoogle Scholar
  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, WallingfordGoogle Scholar
  18. Guo T, Diener MD, Chai Y, Alford MJ, Haufler RE, McClure SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Uranium stabilization of C28: a tetravalent fullerene. Science 257:1661–1664CrossRefGoogle Scholar
  19. Haddon RC (1990) Measure of nonplanarity in conjugated organic molecules: which structurally characterized molecule displays the highest degree of pyramidalization? J Am Chem Soc 112:3385–3389CrossRefGoogle Scholar
  20. Haddon RC (2001) Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to the σ bond angles. J Phys Chem A 105:4164–4165CrossRefGoogle Scholar
  21. Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in I h symmetrical fullerenes: the 2(N + 1)2 rule. Angew Chem Int Ed 39:3915–3917CrossRefGoogle Scholar
  22. Jahn H, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc R Soc A 161:220–235CrossRefGoogle Scholar
  23. Manolopoulos DE, Fowler PW (1992) Molecular graphs, point groups, and fullerenes. J Chem Phys 96:7603–7614CrossRefGoogle Scholar
  24. Nagy K, Nagy CL, Tasnadi E, Katona G, Diudea MV (2013) Hyper-diamonds and dodecahedral architectures by tetrapodal carbon nanotube junctions. Acta Chim Slov 60:1–4Google Scholar
  25. Noël Y, De La Pierre M, Zicovich-Wilson CM, Orlando R, Dovesi R (2014) Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: Insights from an ab initio hybrid DFT study. Phys Chem Chem Phys 16:13390–13401CrossRefGoogle Scholar
  26. Ray Dias J (1993) Fullerenes to benzenoids and the leapfrog algorithm. Chem Phys Lett 204:486–490CrossRefGoogle Scholar
  27. Romo-Herrera JM, Terrones M, Terrones H, Dag S, Meunier V (2007) Covalent 2D and 3D networks from 1D nanostructures: designing new materials. Nano Lett 7:570–576CrossRefGoogle Scholar
  28. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  29. Schwerdtfeger P, Wirz L, Avery J (2013) Program fullerene – a software package for constructing and analyzing structures of regular fullerenes, version 4.4. J Comput Chem 34:1508–1526CrossRefGoogle Scholar
  30. Scuseria GE (1992) Negative curvature and hyperfullerenes. Chem Phys Lett 195:534–536CrossRefGoogle Scholar
  31. Tang AC, Huang FQ (1996) Electronic structures and stability rules of tetrahedral fullerenes. Chem Phys Lett 258:562–573CrossRefGoogle Scholar
  32. Terrones H, Terrones M (2003) Curved nanostructured materials. New J Phys 5:126.1–126.37CrossRefGoogle Scholar
  33. Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM (2002a) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505/1–075505/4CrossRefGoogle Scholar
  34. Terrones M, Charlier JC, Banhart F, Grobert N, Terrones H, Ajayan PM (2002b) Towards nanodevice fabrication: joining and connecting single-walled carbon nanotubes. New Diamond Front Carbon Technol 12:315–323Google Scholar
  35. Terrones M, Banhart F, Hernández E, Grobert N, Charlier JC, Terrones H, Ajayan PM (2003) In-situ welding of single-walled carbon nanotubes and melting of encapsulated metal clusters in carbon shells: theory and experiment. Microsc Microanal 9:320–321Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Csaba L. Nagy
    • 1
    Email author
  • Katalin Nagy
    • 1
  • Mircea V. Diudea
    • 2
  1. 1.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringUniversity of Babes-BolyaiCluj-NapocaRomania
  2. 2.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations