Skip to main content

Omega Polynomial in Nanostructures

  • Chapter
  • First Online:
Distance, Symmetry, and Topology in Carbon Nanomaterials

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 9))

  • 586 Accesses

Abstract

Omega polynomial, developed in 2006 in Cluj, Romania, counts the number of topologically parallel edges in all the opposite edge stripes of a connected graph. Definitions and relations with other polynomials and well-known topological indices are given. Within this chapter, omega polynomial is computed in several 3D nanostructures and crystal networks, and analytical formulas as well as examples are given. This polynomial is viewed as an alternative to the crystallographic description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashrafi AR, Ghorbani M, Jalali M (2008a) Computing sadhana polynomial of V-phenylenic nanotubes and nanotori. Indian J Chem 47A:535–537

    Google Scholar 

  • Ashrafi AR, Jalali M, Ghorbani M, Diudea MV (2008b) Computing PI and omega polynomials of an infinite family of fullerenes. MATCH Commun Math Comput Chem 60:905–916

    Google Scholar 

  • Ashrafi AR, Manoochehrian B, Yousefi-Azari H (2006) On the PI polynomial of a graph. Util Math 71:97–108

    Google Scholar 

  • Aurenhammer F, Hagauer J (1995) Recognizing binary Hamming graphs in O(n2logn) time. Math Syst Theory 28:387–396

    Article  Google Scholar 

  • Brešar B (2001) Partial Hamming graphs and expansion procedures. Discret Math 237:13–27

    Article  Google Scholar 

  • Brešar B, Imrich W, Klavžar S (2003) Fast recognition algorithms for classes of partial cubes. Discret Appl Math 131:51–61

    Article  Google Scholar 

  • Diudea MV (2005) Nanostructures novel architecture. Nova, New York

    Google Scholar 

  • Diudea MV (2006) Omega polynomial. Carpath J Math 22:43–47

    Google Scholar 

  • Diudea MV (2010a) Counting polynomials and related indices by edge cutting procedures. MATCH Commun Math Comput Chem 64(3):569–590

    Google Scholar 

  • Diudea MV (2010b) Counting polynomials in partial cubes. In: Gutman I, Furtula B (eds) Novel molecular structure descriptors – theory and applications II. University of Kragujevac, Kragujevac, pp 191–215

    Google Scholar 

  • Diudea MV (2010c) Nanomolecules and nanostructures – polynomials and indices. MCM Ser. 10. University of Kragujevac, Kragujevac

    Google Scholar 

  • Diudea MV, Klavžar S (2010) Omega polynomial revisited. Acta Chem Sloven 57:565–570

    Google Scholar 

  • Diudea MV, Cigher S, John PE (2008) Omega and related counting polynomials. MATCH Commun Math Comput Chem 60:237–250

    Google Scholar 

  • Diudea MV, Dorosti N, Iranmanesh A (2010a) Cluj CJ polynomial and indices in a dendritic molecular graph. Studia UBB Chemia LV 4:247–253

    Google Scholar 

  • Diudea MV, Vizitiu AE, Mirzargar M, Ashrafi AR (2010b) Sadhana polynomial in nano-dendrimers. Carpath J Math 26:59–66

    Google Scholar 

  • Diudea MV, Florescu MS, Khadikar PV (2006) Molecular topology and its applications. EFICON, Bucharest

    Google Scholar 

  • Diudea MV, Ilić A (2009) Note on omega polynomial. Carpath J Math 25(2):177–185

    Google Scholar 

  • Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, Dordrecht

    Book  Google Scholar 

  • Diudea MV, Petitjean M (2008) Symmetry in multi tori. Symmetry Culture Sci 19(4):285–305

    Google Scholar 

  • Diudea MV, Szefler B (2012) Omega polynomial in polybenzene multitori. Iran J Math Sci Info 7:67–74

    Google Scholar 

  • Djoković DŽ (1973) Distance preserving subgraphs of hypercubes. J Combin Theory Ser B 14:263–267

    Article  Google Scholar 

  • Eppstein D (2008) Recognizing partial cubes in quadratic time. 19th ACM-SIAM Symp. Discrete Algorithms, San Francisco, 1258–1266

    Google Scholar 

  • Gutman I (1994) A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes of New York 27:9–15

    Google Scholar 

  • Gutman I, Klavžar S (1995) An algorithm for the calculation of the szeged index of benzenoid hydrocarbons. J Chem Inf Comput Sci 35:1011–1014

    Article  Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading

    Google Scholar 

  • Imrich W, Klavžar S (1993) A simple O(mn) algorithm for recognizing Hamming graphs. Bull Inst Comb Appl 9:45–56

    Google Scholar 

  • John PE, Khadikar PV, Singh J (2007a) A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts. J Math Chem 42:37–45

    Article  Google Scholar 

  • John PE, Vizitiu AE, Cigher S, Diudea MV (2007b) CI index in tubular nanostructures. MATCH Commun Math Comput Chem 57:479–484

    Google Scholar 

  • Khadikar PV (2000) On a novel structural descriptor PI. Nat Acad Sci Lett 23:113–118

    Google Scholar 

  • Khadikar PV, Agrawal VK, Karmarkar S (2002) Prediction of lipophilicity of polyacenes using quantitative structure-activity relationships. Bioorg Med Chem 10:3499–3507

    Article  Google Scholar 

  • Klavžar S (2008a) A bird’s eye view of the cut method and a survey of its applications in chemical graph theory. MATCH Commun Math Comput Chem 60:255–274

    Google Scholar 

  • Klavžar S (2008b) Some comments on co graphs and CI index. MATCH Commun Math Comput Chem 59:217–222

    Google Scholar 

  • Nagy CsL, Diudea MV (2009) Nano Studio software, “Babes-Bolyai” University, Cluj

    Google Scholar 

  • O’Keeffe M, Adams GB, Sankey OF (1992) Predicted new low energy forms of carbon. Phys Rev Lett 68:2325–2328

    Article  Google Scholar 

  • Szefler B, Diudea MV (2012) Polybenzene revisited. Acta Chim Slov 59:795–802

    Google Scholar 

  • Wilkeit E (1990) Isometric embeddings in Hamming graphs. J Combin Theory Ser B 50:179–197

    Article  Google Scholar 

  • Winkler PM (1984) Isometric embedding in products of complete graphs. Discret Appl Math 8:209–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea V. Diudea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diudea, M.V., Szefler, B. (2016). Omega Polynomial in Nanostructures. In: Ashrafi, A., Diudea, M. (eds) Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-31584-3_2

Download citation

Publish with us

Policies and ethics