Edge-Wiener Indices of Composite Graphs

  • Mahdieh Azari
  • Ali IranmaneshEmail author
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)


The distance d(u, v|G) between the vertices u and v of a simple connected graph G is the length of any shortest path in G connecting u and v. The Wiener index W(G) of G is defined as the sum of distances between all pairs of vertices of G. The edge-Wiener index of G is conceived in an analogous manner as the sum of distances between all pairs of edges of G. Two possible distances d 0(e, f|G) and d 4(e, f|G) between the edges e and f of G can be considered and according to them, the corresponding edge-Wiener indices \( {W}_{e_0}(G) \) and \( {W}_{e_4}(G) \) are defined. In this chapter, we report our recent results on computing the first and second edge-Wiener indices of some composite graphs. Results are illustrated by some interesting examples.


Distance Edge-Wiener indices Edge-Wiener polynomials Composite graphs 



Partial support by the Center of Excellence of Algebraic Hyper-structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledged by the second author (AI).


  1. Alizadeh Y, Iranmanesh A, Došlić T, Azari M (2014) The edge Wiener index of suspensions, bottlenecks, and thorny graphs. Glas Mat Ser III 49(69):1–12CrossRefGoogle Scholar
  2. Ashrafi AR, Yousefi S (2007) A new algorithm for computing distance matrix and Wiener index of zig − zag polyhex nanotubes. Nanoscale Res Lett 2:202–206CrossRefGoogle Scholar
  3. Azari M, Iranmanesh A (2011a) Generalized Zagreb index of graphs. Studia Univ Babes − Bolyai Chem 56(3):59–70Google Scholar
  4. Azari M, Iranmanesh A (2011b) Computation of the edge Wiener indices of the sum of graphs. Ars Combin 100:113–128Google Scholar
  5. Azari M, Iranmanesh A (2013) Chemical graphs constructed from rooted product and their Zagreb indices. MATCH Commun Math Comput Chem 70:901–919Google Scholar
  6. Azari M, Iranmanesh A (2014a) The second edge-Wiener index of some composite graphs. Miskolc Math Notes 15(2):305–316Google Scholar
  7. Azari M, Iranmanesh A (2014b) Computing Wiener − like topological invariants for some composite graphs and some nanotubes and nanotori. In: Gutman I (ed) Topics in chemical graph theory. Univ Kragujevac, Kragujevac, pp 69–90Google Scholar
  8. Azari M, Iranmanesh A, Tehranian A (2010) Computation of the first edge Wiener index of a composition of graphs. Studia Univ Babes − Bolyai Chem 55(4):183–196Google Scholar
  9. Azari M, Iranmanesh A, Tehranian A (2011) Maximum and minimum polynomials of a composite graph. Austral J Basic Appl Sci 5(9):825–830Google Scholar
  10. Azari M, Iranmanesh A, Tehranian A (2012) A method for calculating an edge version of the Wiener number of a graph operation. Util Math 87:151–164Google Scholar
  11. Azari M, Iranmanesh A, Gutman I (2013a) Zagreb indices of bridge and chain graphs. MATCH Commun Math Comput Chem 70:921–938Google Scholar
  12. Azari M, Iranmanesh A, Tehranian A (2013b) Two topological indices of three chemical structures. MATCH Commun Math Comput Chem 69:69–86Google Scholar
  13. Buckley F, Harary F (1990) Distance in graphs. Addison − Wesley, RedwoodGoogle Scholar
  14. Dankelman P, Gutman I, Mukwembi S, Swart HC (2009) The edge Wiener index of a graph. Discrete Math 309:3452–3457CrossRefGoogle Scholar
  15. Diudea MV (1995) Wiener index of dendrimers. MATCH Commun Math Comput Chem 32:71–83Google Scholar
  16. Diudea MV (2001) QSPR/QSAR studies by molecular descriptors. Nova, New YorkGoogle Scholar
  17. Dobrynin AA, Entringer R, Gutman I (2001) Wiener index for trees: theory and applications. Acta Appl Math 66(3):211–249CrossRefGoogle Scholar
  18. Eliasi M, Iranmanesh A (2013) Hosoya polynomial of hierarchical product of graphs. MATCH Commun Math Comput Chem 69(1):111–119Google Scholar
  19. Eliasi M, Raeisi GH, Taeri B (2012) Wiener index of some graph operations. Discrete Appl Math 160(9):1333–1344CrossRefGoogle Scholar
  20. Falahati-Nezhad F, Iranmanesh A, Tehranian A, Azari M (2014) Strict lower bounds on the multiplicative Zagreb indices of graph operations. Ars Combin 117:399–409Google Scholar
  21. Graovac A, Pisanski T (1991) On the Wiener index of a graph. J Math Chem 8:53–62CrossRefGoogle Scholar
  22. Gutman I (1994) A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes NY 27:9–15Google Scholar
  23. Gutman I (2010) Edge versions of topological indices. In: Gutman I, Furtula B (eds) Novel molecular structure descriptors-theory and applications II. Univ Kragujevac, Kragujevac, pp 3–20Google Scholar
  24. Gutman I, Das KC (2004) The first Zagreb index 30 years after. MATCH Commun Math Comput Chem 50:83–92Google Scholar
  25. Gutman I, Polansky OE (1986) Mathematical concepts in organic chemistry. Springer, BerlinCrossRefGoogle Scholar
  26. Gutman I, Trinajstić N (1972) Graph theory and molecular orbitals, total π − electron energy of alternant hydrocarbons. Chem Phys Lett 17:535–538CrossRefGoogle Scholar
  27. Gutman I, Ruscić B, Trinajstić N, Wilcox CF (1975) Graph theory and molecular orbitals. XII Acyclic polyenes J Chem Phys 62(9):3399–3405Google Scholar
  28. Gutman I, Yeh YN, Lee SL, Luo YL (1993) Some new results in the theory of the Wiener number. Indian J Chem 32A:651–661Google Scholar
  29. Hosoya H (1988) On some counting polynomials in chemistry. Discrete Appl Math 19:239–257CrossRefGoogle Scholar
  30. Iranmanesh A (2013) (Chapter 13): The edge-wiener index and its computation for some nanostructures. In: Ashrafi AR, Cataldo F, Iranmanesh A, Ori O (eds) Topological modelling of nanostructures and extended systems. Springer, Netherlands, pp 425–471CrossRefGoogle Scholar
  31. Iranmanesh A, Azari M (2015a) (Chapter 7): The first and second Zagreb indices of several interesting classes of chemical graphs and nanostructures. In: Putz MV, Ori O (eds) Exotic properties of carbon nanomatter, vol 8. Springer, Netherlands, pp 153–183Google Scholar
  32. Iranmanesh A, Azari M (2015b) Edge-Wiener descriptors in chemical graph theory: a survey. Curr Org Chem 19(3):219–239CrossRefGoogle Scholar
  33. Iranmanesh A, Gutman I, Khormali O, Mahmiani A (2009) The edge versions of the Wiener index. MATCH Commun Math Comput Chem 61:663–672Google Scholar
  34. John PE, Diudea MV (2004) Wiener index of zig − zag polyhex nanotubes. Croat Chem Acta 77:127–132Google Scholar
  35. Khalifeh MH, Yousefi − Azari H, Ashrafi AR (2009a) The first and second Zagreb indices of some graph operations. Discrete Appl Math 157:804–811CrossRefGoogle Scholar
  36. Khalifeh MH, Yousefi − Azari H, Ashrafi AR, Wagner SG (2009b) Some new results on distance − based graph invariants. Eur J Combin 30:1149–1163CrossRefGoogle Scholar
  37. Nadjafi-Arani MJ, Khodashenas H, Ashrafi AR (2012) Relationship between edge Szeged and edge Wiener indices of graphs. Glas Mat Ser III 47:21–29CrossRefGoogle Scholar
  38. Putz MV, Ori O, Cataldo F, Putz AM (2013) Parabolic reactivity “coloring” molecular topology: application to carcinogenic PAHs. Curr Org Chem 17(23):2816–2830CrossRefGoogle Scholar
  39. Réti T (2012) On the relationships between the first and second Zagreb indices. MATCH Commun Math Comput Chem 68:169–188Google Scholar
  40. Sagan BE, Yeh YN, Zhang P (1996) The Wiener polynomial of a graph. Inter J Quantum Chem 60(5):959–969CrossRefGoogle Scholar
  41. Stevanović D (2001) Hosoya polynomials of composite graphs. Discrete Math 235:237–244CrossRefGoogle Scholar
  42. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  43. Trinajstić N (1992) Chemical graph theory. CRC Press, Boca RatonGoogle Scholar
  44. Wiener H (1947a) Structural determination of paraffin boiling points. J Am Chem Soc 69(1):17–20CrossRefGoogle Scholar
  45. Wiener H (1947b) Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffin hydrocarbons. J Am Chem Soc 69:2636–2638CrossRefGoogle Scholar
  46. Yeh YN, Gutman I (1994) On the sum of all distances in composite graphs. Discrete Math 135:359–365CrossRefGoogle Scholar
  47. Yousefi-Azari H, Khalifeh MH, Ashrafi AR (2011) Calculating the edge Wiener and edge Szeged indices of graphs. J Comput Appl Math 235(16):4866–4870CrossRefGoogle Scholar
  48. Zhou B (2004) Zagreb indices. MATCH Commun Math Comput Chem 52:113–118Google Scholar
  49. Zhou B, Gutman I (2005) Further properties of Zagreb indices. MATCH Commun Math Comput Chem 54:233–239Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Kazerun BranchIslamic Azad UniversityKazerunIran
  2. 2.Department of Pure Mathematics, Faculty of Mathematical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations