Abstract
Let X be a complex algebraic manifold. Let U be the complement of a configuration of submanifolds. We study the Leray spectral sequence of the inclusion U ↪ X computing the cohomology of U. Under some condition posed on the intersections of submanifolds we show that the Leray spectral sequence degenerates on E 3. This result generalizes well known properties of hyperplane arrangements. The main cause which rigidifies the spectral sequence is the weight filtration in cohomology.
Keywords
- Deligne spectral sequence
- Hodge structure
- Leray spectral sequence
This is a preview of subscription content, access via your institution.
Buying options
Notes
- 1.
Avoiding the sheaf language and forgetting Hodge structure we have
$$\displaystyle{\left (R^{k}j'_{{\ast}}\mathbb{Q}_{ U_{1}\cup U_{2}}\right )_{x} \simeq H^{k}(B_{x} \cap (U_{ 1} \cup U_{2})) \simeq H^{k}(\partial B_{x} \cap (U_{ 1} \cup U_{2}))\,,}$$where B x is a small ball around x. The stalk of the sheaf of local cohomology \(\mathcal{H}_{\ell}(Y )_{x}\) is isomorphic to
$$\displaystyle{H_{\ell}(B_{x} \cap Y,\partial B_{x} \cap Y ) \simeq \bar{ H}_{\ell-1}(\partial B_{x} \cap Y )\,.}$$By Alexander duality in ∂ B x we have
$$\displaystyle{\bar{H}^{k}(\partial B_{x} \cap (U_{ 1} \cup U_{2})) \simeq \bar{ H}_{2n-k-2}(\partial B_{x} \cap Y ) \simeq H_{2n-k-1}(B_{x} \cap Y,\partial B_{x} \cap Y )\,.}$$
References
A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers. Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), pp. 5–171
A. Björner, T. Ekedahl, Subspace arrangements over finite fields: cohomological and enumerative aspects. Adv. Math. 129 (2), 159–187 (1997)
M.W. Davis, T. Januszkiewicz, I.J. Leary, The ℓ 2-cohomology of hyperplanes complements. Groups Geom. Dyn. 1, 301–309 (2007)
M.W. Davis, S. Settepanella, Vanishing results for the cohomology of complex toric hyperplane complements. Publ. Mat. 57, 379–392 (2013)
P. Deligne, Théorie de Hodge II. Publications Mathématiques/Institut des Hautes Etudes Scientifiques, vol. 40 (Institut des Hautes études Scientifiques, Bures-sur-Yvette, 1972), pp. 5–57
P. Deligne, Théorie de Hodge III. Publications Mathématiques/Institut des Hautes Etudes Scientifiques, vol. 44 (Institut des Hautes études Scientifiques, Bures-sur-Yvette, 1974), pp. 5–77
P. Deligne, La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52, 137–252 (1980)
G. Denham, A.I. Suciu, S. Yuzvinsky, Combinatorial covers and vanishing of cohomology. Selecta Math. (N.S.) 22 (2), 561–594 (2016)
H. Esnault, V. Schechtman, E. Viehweg, Cohomology of local systems on the complement of hyperplanes. Invent. math. 109, 557–561 (1992); Erratum. 112 (1993)
M. Goresky, R. MacPherson, Stratified Morse Theory (Springer, Berlin, 1988)
K. Jewell, Complements of sphere and subspace arrangements. Topology Appl. 56 (3), 199–214 (1994)
K. Jewell, P. Orlik, B. Shapiro, On the complements of affine subspace arrangements. Topology Appl. 56 (3), 215–233 (1994)
Y. Kawahara, Hodge number of cohomology of local systems on the complement of hyperplanes in \(\mathbb{P}^{3}\). J. Math. Sci. Univ. Tokyo 8, 177–199 (2001)
M. Saito, Hodge modules. Publ. Res. Inst. Math. Sci. 26 (2), 221–333 (1990)
V. Schechtman, H. Terao, A. Varchenko, Cohomology of local systems and the Kac-Kazhdan condition for singular vectors. J. Pure Appl. Algebra 100, 93–102 (1995)
K. Timmerscheidt, Mixed Hodge theory for unitary local systems. J. Reine Angew. Math. 379, 152–171 (1987)
B. Totaro, Configuration spaces of algebraic varieties. Topology 35 (4), 1057–1067 (1996)
Acknowledgements
This work was supported by NCN grant 2013/08/A/ST1/00804.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Weber, A. (2016). Leray Spectral Sequence for Complements of Certain Arrangements of Smooth Submanifolds. In: Callegaro, F., Cohen, F., De Concini, C., Feichtner, E., Gaiffi, G., Salvetti, M. (eds) Configuration Spaces. Springer INdAM Series, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-31580-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-31580-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31579-9
Online ISBN: 978-3-319-31580-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)