Advertisement

All-Optical X-Ray and γ-Ray Sources from Ultraintense Laser-Matter Interactions

  • Leonida A. GizziEmail author
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

With the dramatic recent development of ultraintense lasers , a new perspective for compact, all-laser driven X-ray and γ-ray sources is emerging, aiming at a brightness currently achievable only with state of the art free electron lasers and Thomson scattering Sources based on large linear accelerators. In contrast with existing sources, all-optical sources exploit laser-plasma interaction to obtain the required high energy electrons to generate radiation. Bremsstrahlung or fluorescence emission driven from fast electron generation in laser interaction with solids was demonstrated to provide effective ultrashort X-ray emission with unique properties. More recently, laser-driven electron acceleration from interaction with gas-targets is being considered in place of conventional radio-frequency electron accelerators for a variety of radiation emission mechanisms. Broadband radiation generation schemes including betatron and Bremsstrahlung are being developed while free electron laser and Thomson scattering by collision with a synchronized laser pulse are being proposed for the generation of narrow band radiation. Here we present an overview of the current developments in this field.

Keywords

Laser Pulse Fast Electron Energy Spread Electron Bunch Fast Ignition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Stickland, G. Mourou, Opt. Commun. 56, 219 (1985)CrossRefADSGoogle Scholar
  2. 2.
    J. Schwinger, Phys. Rev. 82, 664 (1951)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    J. Faure, Y. Glinec, A. Pukhov et al., Lett. Nat. 431, 541 (2004)CrossRefGoogle Scholar
  4. 4.
    W.P. Leemans et al., Nat. Phys. 2, 696 (2006)CrossRefGoogle Scholar
  5. 5.
    D. Giulietti et al., Phys. Plasmas 9, 3655 (2002). (letter)CrossRefADSGoogle Scholar
  6. 6.
    W.P. Leemans et al., AIP Conf. Proc. 1299, 3 (2010)CrossRefADSGoogle Scholar
  7. 7.
    J.G. Gallacher et al., Phys. Plasmas 16, 093102 (2009)CrossRefADSGoogle Scholar
  8. 8.
  9. 9.
    T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)CrossRefADSGoogle Scholar
  10. 10.
    A. Rousse et al., Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Top. 50, 2200 (1994)Google Scholar
  11. 11.
    R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000)CrossRefADSGoogle Scholar
  12. 12.
    M. Tabak et al., Phys. Plasmas 1, 1626 (1994)CrossRefADSGoogle Scholar
  13. 13.
    S. Atzeni, J.M. ter Vehn, The Physics of Inertial Fusion (Oxford University Press, Great Clarendon Street, Oxford ***OX2 6DP, 2004)Google Scholar
  14. 14.
    A. Pukhov, J. ter Vehn, Appl. Phys. B 74, 355 (2002)CrossRefADSGoogle Scholar
  15. 15.
    S. Gordienko, A. Pukhov, Phys. Plasmas 12, 043109 (2005)CrossRefADSGoogle Scholar
  16. 16.
    B.B. Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)CrossRefADSGoogle Scholar
  17. 17.
    S.V. Bulanov, F. Pegoraro, A.M. Pukhov, A.S. Sakharov, Phys. Rev. Lett. 78, 4205 (1997)CrossRefADSGoogle Scholar
  18. 18.
    S. Bulanov, N. Naumova, F. Pegoraro, J. Sakai, Phys. Rev. E 58, 5257 (1995)CrossRefADSGoogle Scholar
  19. 19.
    P. Tomassini et al., Phys. Rev. ST Accel. Beams 6, 121301 (2003)CrossRefADSGoogle Scholar
  20. 20.
    A.J. Gonsalves et al., Nat. Phys. 7, 862 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Buck et al., Phys. Rev. Lett. 110, 185006 (2013)CrossRefADSGoogle Scholar
  22. 22.
    D. Umstadter, J.K. Kim, E. Dodd, Phys. Rev. Lett. 76, 2073 (1996)CrossRefADSGoogle Scholar
  23. 23.
    E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)CrossRefADSGoogle Scholar
  24. 24.
    M. Chen, Z.-M. Sheng, Y.-Y. Ma, J. Zhang, J. Appl. Phys. 99 (2006)Google Scholar
  25. 25.
    S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992)CrossRefADSGoogle Scholar
  26. 26.
    W.L. Kruer, K. Estabrook, Phys. Fluids 28, 430 (1985)CrossRefADSGoogle Scholar
  27. 27.
    F.N. Beg et al., Phys. Plasmas 4, 447 (1997)CrossRefADSGoogle Scholar
  28. 28.
    S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992)CrossRefADSGoogle Scholar
  29. 29.
    M.G. Haines, M.S. Wei, F.N. Beg, R.B. Stephens, Phys. Rev. Lett. 102, 045008 (2009)CrossRefADSGoogle Scholar
  30. 30.
    B.S. Paradkar et al., Phys. Rev. E 83, 046401 (2011)CrossRefADSGoogle Scholar
  31. 31.
    J. May et al., Phys. Rev. E 84, 025401 (2011)CrossRefADSGoogle Scholar
  32. 32.
    W. Theobald et al., Phys. Plasmas 18, 056305 (2011)CrossRefADSGoogle Scholar
  33. 33.
    F. Ewald, H. Schwoerer, R. Sauerbrey, Europhys. Lett. 60, 710 (2002)CrossRefADSGoogle Scholar
  34. 34.
    G. Cristoforetti et al., Phys. Rev. E 87, 023103 (2013)CrossRefADSGoogle Scholar
  35. 35.
    L.A. Gizzi et al., Plasma Phys. Control. Fusion 49, B221 (2007)CrossRefADSGoogle Scholar
  36. 36.
    G. Cristoforetti et al., Plasma Phys. Control. Fusion 56, 095001 (2014)CrossRefADSGoogle Scholar
  37. 37.
    T. Ceccotti et al., Phys. Rev. Lett. 111, 185001 (2013)CrossRefADSGoogle Scholar
  38. 38.
    M.A. Purvis et al., Nat. Photonics 7, 796 (2013)Google Scholar
  39. 39.
    L. Yi, A. Pukhov, P.L. Thanh, B. Shen 1, 1 (2015)Google Scholar
  40. 40.
    L.A. Gizzi et al., Phys. Rev. Lett. 76, 2278 (1996)CrossRefADSGoogle Scholar
  41. 41.
    L.A. Gizzi et al., Laser Part. Beams 19, 181 (2001)CrossRefADSGoogle Scholar
  42. 42.
    D. Giulietti et al., Phys. Rev. E 64, 015402(R) (2001)CrossRefADSGoogle Scholar
  43. 43.
    A. Giulietti et al., Phys. Rev. Lett. 101, 105002 (2008)CrossRefADSGoogle Scholar
  44. 44.
    G. Sarri et al., Phys. Rev. Lett. 113, 224801 (2014)CrossRefADSGoogle Scholar
  45. 45.
    A. Ben-Ismal, J. Faure, V. Malka, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrom. Detect. Assoc. Equip. 629, 382 (2011)CrossRefADSGoogle Scholar
  46. 46.
    A. Ben-Ismal et al., Appl. Phys. Lett. 98, 264101 (2011)CrossRefADSGoogle Scholar
  47. 47.
    S. Corde et al., Rev. Mod. Phys. 85, 1 (2013)CrossRefADSGoogle Scholar
  48. 48.
    J. Wenz et al., Nat. Commun. 6, 7568 (2015)CrossRefADSGoogle Scholar
  49. 49.
    S. Kneip et al., Appl. Phys. Lett. 99, 093701 (2011)CrossRefADSGoogle Scholar
  50. 50.
    Z. Najmudin et al., Philos. Trans. A. Math. Phys. Eng. Sci. 372, 20130032 (2014)CrossRefADSGoogle Scholar
  51. 51.
    S. Cipiccia et al., Nat. Phys. 7, 867 (2011)CrossRefGoogle Scholar
  52. 52.
    W. Walsh et al., in Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE (IEEE, Orlando, FL, 2009), pp. 80–85Google Scholar
  53. 53.
    C.T.Angell et al., Phys. Rev. C 90, 054315 (2014)Google Scholar
  54. 54.
    F. Albert et al., Phys. Rev. ST Accel. Beams 13, 070704 (2010)CrossRefADSGoogle Scholar
  55. 55.
    A.M. Sandorfi et al., IEEE Trans. Nucl. Sci. 30, 3083 (1983)CrossRefADSGoogle Scholar
  56. 56.
    H. Schwoerer et al., Phys. Rev. Lett. 96, 014802 (2006)CrossRefADSGoogle Scholar
  57. 57.
    W. Leemans et al., Phys. Rev. Lett. 113, 245002 (2014)CrossRefADSGoogle Scholar
  58. 58.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)zbMATHGoogle Scholar
  59. 59.
    L.A. Gizzi et al., IEEE Trans. Plasma Sci. 39, 2954 (2011)CrossRefADSGoogle Scholar
  60. 60.
    S.H. Glenzer et al., Phys. Plasmas 6, 2117 (1999)CrossRefADSGoogle Scholar
  61. 61.
    P. Tomassini, A. Giulietti, D. Giulietti, L.A. Gizzi, Appl. Phys. B 80, 419 (2005)CrossRefADSGoogle Scholar
  62. 62.
    S.K. Ride, E. Esarey, M. Baine, Phys. Rev. E 52, 5425 (1995)CrossRefADSGoogle Scholar
  63. 63.
    E. Esarey, S.K. Ride, P. Sprangle, Phys. Rev. E 48, 3003 (1993)CrossRefADSGoogle Scholar
  64. 64.
    A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, London, 2013)CrossRefGoogle Scholar
  65. 65.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Elsevier, Oxford, 1975)zbMATHGoogle Scholar
  66. 66.
    A. Di Piazza, K. Hatsagortsyan, C. Keitel, Phys. Rev. Lett. 102, 254802 (2009)CrossRefADSGoogle Scholar
  67. 67.
    R.H. Milburn, Phys. Rev. Lett. 10, 75 (1963)CrossRefADSGoogle Scholar
  68. 68.
    C. Bemporad, R.H. Milburn, N. Tanaka, M. Fotino, Phys. Rev. 138, B1546 (1965)CrossRefADSGoogle Scholar
  69. 69.
    W.P. Leemans, Phys. Rev. Lett. 67, 1434 (1991)CrossRefADSGoogle Scholar
  70. 70.
    P. Tomassini et al., Phys. Rev. Spec. Top. Accel. Beams 6, 121301 (2003)CrossRefADSGoogle Scholar
  71. 71.
    L. Labate et al., Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrom. Detect. Assoc. Equip. 495, 148 (2002)CrossRefADSGoogle Scholar
  72. 72.
    S. Chen et al., Phys. Rev. Lett. 155003, 1 (2013)Google Scholar
  73. 73.
    C. Liu et al., Opt. Lett. 39, 4132 (2014)CrossRefADSGoogle Scholar
  74. 74.
    N.D. Powers et al., Nat. Photonics 8, 28 (2013)CrossRefADSGoogle Scholar
  75. 75.
    K. Khrennikov et al., Phys. Rev. Lett. 114, 1 (2015)CrossRefGoogle Scholar
  76. 76.
    D.J. Corvan, G. Sarri, M. Zepf, Rev. Sci. Instrum. 85, 1 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Consiglio Nazionale delle RicercheIstituto Nazionale di OtticaPisaItaly

Personalised recommendations