Advertisement

Laser-Plasma Accelerators Based Ultrafast Radiation Biophysics

Chapter
  • 824 Downloads
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The innovating advent of TeraWatt lasers able to drive laser-plasma accelerators and produce ultra-short relativistic electron beams in the MeV range, combined with ultrafast spectroscopy methods, opens exciting opportunities for the emerging domain of high energy radiation femtochemistry (HERF). In synergy with low energy radiation femtochemistry (LERF) , HERF favours the development of new conceptual approaches for pulsed radiation biology and medicine. The unprecedented high dose rate delivered by ultrashort relativistic electron beams (1012–1013 Gy s−1) with laser techniques can be used to investigate the spatio-temporal approach of early radiation processes. The chapter focuses on early physico-chemical phenomena which occur in the prethermal regime of secondary electrons, considering the sub-structures of tracks and very short-lived quantum probes. This interdisciplinary breakthrough would provide guidance for the real-time nanodosimetry of molecular targets in integrated biologically relevant environments and would open new perspectives for the conceptualisation of time-dependent molecular RBE (Relative Biological Effectiveness), in synergy with particle based anticancer radiotherapies.

Keywords

High Dose Rate Electron Bunch Ionization Track Plasma Bubble Penumbra Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    V. Malka, S. Fritzler, E. Lefebvre, M.M. Aleonard, F. Burgy, J.P. Chambaret, J.F. Chemin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.P. Rousseau, J.N. Scheurer, B. Walton, A.E. Dangor, Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    E. Erasey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    T. Tajima, Laser acceleration and its future. Proc. Jpn. Acad. Ser. 86, 147–157 (2010)CrossRefGoogle Scholar
  5. 5.
    Malka, V., Laser plasma accelerators, in Laser-Plasma Interactions and Applications, eds. by P. McKenna, D. Neely, R. Bingham, D. Jaroszynski (Springer International Publishing, Swizerland, 231–301, 2013)Google Scholar
  6. 6.
    Y. Gauduel, S. Fritzler, A. Hallou, Y. Glinec, V. Malka, Femtosecond relativistic electron beam triggered early bioradical events, in Femtosecond Laser Applications in Biology, SPIE, vol. 5463 (2004), pp. 86–96Google Scholar
  7. 7.
    V. Malka, J. Faure, Y. Gauduel, E. Lefebvre, A. Rousse, K. Ta Phuoc, Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447–453 (2008)Google Scholar
  8. 8.
    V. Malka, J. Faure, Y.A. Gauduel, Ultra-short electron beams based spatio-temporal radiation biology and radiotherapy. Mut. Res. Rev. 704, 142–151 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Giulietti, M.G. Andreassi, C. Greco, Pulse radiobiology with laser-driven plasma accelerators, in SPIE Proceedings, vol. 8079 (2011), p. 80791JGoogle Scholar
  10. 10.
    Y.A. Gauduel, O. Lundh, M.T. Martin, V. Malka, Laser-plasma accelerators-based high-energy radiation femtochemistry and spatio-temporal radiation biomedicine, in SPIE Optics and Optoelectronics Laser sources and applications, vol. 8433 (2012), p. 843313Google Scholar
  11. 11.
    Y.A. Gauduel, Spatio-temporal radiation biology: an emerging transdisciplinary domain. Mut. Res. Rev. 704, 1 (2010)CrossRefGoogle Scholar
  12. 12.
    J.C. Diels, W. Rudolph (eds.), Ultrashort laser pulse phenomena (Academic Press, New York, 1996)Google Scholar
  13. 13.
    H.A. Zewail (ed.), Femtochemistry: ultrafast dynamics of the chemical bond (World Scientific, Singapore, 1994)Google Scholar
  14. 14.
    W. Castelman (ed.), Femtochemistry VII Fundamental Ultrafast Processes in Chemistry, Physics and Biology (Elsevier, Amsterdam, 2006)Google Scholar
  15. 15.
    Y.A. Gauduel, Femtochemistry: Lasers to Investigate Ultrafast Reactions Lasers in Chemistry, ed. by M. Lackner, vol. 2 (Wiley-VCH, 2008), pp. 861–898Google Scholar
  16. 16.
    J.H. Baxendale, F. Busi (eds.), The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis (Reidel Publishing Company, Dordrecht, 1982)Google Scholar
  17. 17.
    J.E. Turner, J.L. Magee, A. Wright, A. Chatterjee, R.N. Hamm, R.H. Ritchie, Physical and chemical development of electron tracks in liquid water. Rad. Res. 96, 437–449 (1983)Google Scholar
  18. 18.
    Y. Gauduel, P.J. Rossky (eds.), Ultrafast Reaction Dynamics and Solvent Effects (AIP Press, New York, 1994)Google Scholar
  19. 19.
    M.P. Allen, D.J. Tildesley (eds.), Computer Simulation of Liquids (Oxford Science Publications, 1987)Google Scholar
  20. 20.
    M.N. Varma, A. Chatterjee (eds.), Computational Approaches in Molecular Radiation Biology—Monte Carlo Methods (Plenum Press, New York, 1993)Google Scholar
  21. 21.
    J.R. Sabin, E. Brandas (eds.), Advances in Quantum Chemistry: Theory of the Interaction of Radiation with Biomolecules (Elsevier, Amsterdam, 2007)Google Scholar
  22. 22.
    D.N. Nikogosyan, A.A. Oraevsky, V.I. Rupasov, Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation. Chem. Phys. 77, 131–143 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, Some evidence of ultrafast H2O+-water molecule reaction in femtosecond photoionization of pure liquid water: influence on geminate pair recombination dynamics. Chem. Phys. 149, 1–10 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    A. Migus, Y. Gauduel, J.L. Martin, A. Antonetti, Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime. Phys. Rev. Lett. 58, 1159–1562 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    S. Pommeret, A. Antonetti, Y. Gauduel, Electron hydration in pure liquid water. Existence of two nonequilibrium configurations in the near-infrared region. J. Am. Chem. Soc. 113, 9105–9111 (1991)CrossRefGoogle Scholar
  26. 26.
    Y. Gauduel, Ultrafast electron-proton reactivity in molecular liquids, In Ultrafast Dynamics of Chemical Systems, ed. by J.D. Simon (Kluwer Publisher, 1994), pp. 81–136Google Scholar
  27. 27.
    Y. Gauduel, Ultrafast concerted electron-proton transfers in a protic molecular liquid, in Ultrafast Reaction Dynamics and Solvent Effects, eds. by Y. Gauduel, P.J. Rossky (AIP Press, New York, 1994), pp. 191–204Google Scholar
  28. 28.
    Y. Kimura, J.C. Alfano, P.K. Walhout, P.F. Barbara, Ultrafast transient absorption-spectroscopy of the solvated electron in water. J. Phys. Chem. 98, 3450–3458 (1994)CrossRefGoogle Scholar
  29. 29.
    R. Laenen, T. Roth, Generation of solvated electrons in neat water: new results from femtosecond spectroscopy. J. Mol. Struct. 598, 37–43 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, P. Sprangle, Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    A. Pukhov, J. Meyer-ter-Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    C.G.R. Geddes, C.S. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535–538 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, V. Malka, Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett. 102, 164801 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    V. Malka, Laser plasma accelerators: towards high quality electron beam, in Laser pulse phenomena and applications. ed. by F.J. Duarte (Intechweg. Org, 2010)Google Scholar
  37. 37.
    C. Thaury, E. Guillaume, A. Doepp, R. Lehe et al., Demonstration of relativistic electron beam focusing by a laser-plasma lens. Nature Comm. 6, 6860 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Y.A. Gauduel, J. Faure, V. Malka, Ultrashort relativistic electron bunches and spatio-temporal radiation biology, in Proceedings of SPIE, vol. 7080 (2008), pp. 708002–1Google Scholar
  39. 39.
    D.A. Oulianov, R.A. Crowell, D.J. Gosztola, I.A. Shkrob, O.J. Korovyanko, R.C., Rey-de-Castro, Ultrafast pulse radiolysis using a terawatt laser wakefield accelerator. J. Appl. Phys., 101, 053102-1-9 (2007)Google Scholar
  40. 40.
    B. Brozek-Pluska, D. Gliger, A. Hallou, V. Malka, Y. Gauduel, Direct observation of elementary radical events: low and high-energy radiation femtochemistry in solution. Rad. Phys. Chem. 72, 149–157 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Y.A. Gauduel, Y. Glinec, J.P. Rousseau, F. Burgy, V. Malka, High energy radiation femtochemistry of water molecules: early electron-radical pairs processes. Eur. Phys. J. D 60, 121–135 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Y.A. Gauduel, Laser-plasma accelerator based femtosecond high energy radiation chemistry and biology. J. Phys. CS 373, 012012 (2012)ADSGoogle Scholar
  43. 43.
    Y.A. Gauduel, Synergy between low and high energy radical femtochemistry. J. Phys Ser. 261, 0120006 (2011)Google Scholar
  44. 44.
    T. Kai, A. Yokoya, M. Ukai, R. Watanabe, Cross sections, stopping powers, and energy loss rates for rotational and phonon excitation processes in liquid water by electron impact Rad. Phys. Chem 108, 13–17 (2015)ADSGoogle Scholar
  45. 45.
    Farhataziz, M.A.J. Rodgers (eds.), Radiation Chemistry (VCH Publishers, 1987)Google Scholar
  46. 46.
    G.R. Freeman (ed.), Kinetics of Nonhomogeneous Processes (Wiley, New York, 1987), pp. 377–403Google Scholar
  47. 47.
    N.J.B. Green, M.J. Pilling, S. Pimblott, P. Clifford, Stochastic modeling of fast kinetics in radiation tracks. J. Phys. Chem. 94, 251–258 (1990)CrossRefGoogle Scholar
  48. 48.
    D.M. Bartels, A.R. Cook, M. Mudaliar, C.D. Jonah, Spur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopy. J. Phys. Chem. A 104, 1686–1691 (2000)CrossRefGoogle Scholar
  49. 49.
    S.A. Isaacson, The reaction-diffusion master equation as an asymptotic approximation of diffusion at a small target. J. Appl. Math 70, 77–111 (2009)MathSciNetzbMATHGoogle Scholar
  50. 50.
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    S.M. Hooker, Developments in laser-driven plasma accelerators. Nat. Photonics 7, 775–782 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    L. Onsager, Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486 (1936)CrossRefGoogle Scholar
  53. 53.
    A.C. Chernovitz, C.D. Jonah, Isotopic dependence of recombination kinetics in water. J. Phys. Chem. 92, 5946–5950 (1988)CrossRefGoogle Scholar
  54. 54.
    H.G. Paretzke, Radiation track structure theory, in Kinetics of nonhomogeneous processes, ed. by G.R. Freeman (Wiley, New York, 1987), pp. 89–170Google Scholar
  55. 55.
    K.Y. Lam, J.W. Hunt, Picosecond pulsed-radiolysis 6. Fast electron reactions in concentrated solutions of scavengers in water and alcohols. Int. J. Radiat. Phys. Chem. 7, 317–338 (1975)CrossRefGoogle Scholar
  56. 56.
    S.M. Pimblott, J.A. La Verne, D.M. Bartels, C.D. Jonah, Reconciliation of transient absorption and chemically scavenged yields of the hydrated electron in radiolysis. J. Phys. Chem. 100, 9412–9415 (1996)CrossRefGoogle Scholar
  57. 57.
    C.D. Jonah, D.M. Bartels, A.C. Chernovitz, Primary processes in the radiation chemistry of water. Radiat. Phys. Chem. 34, 145–156 (1989)ADSGoogle Scholar
  58. 58.
    P. Han, D.M. Bartels, H/D isotope effects in water radiolysis 2. Dissociation of electronically excited water. J. Phys. Chem. 94, 5824–5833 (1990)CrossRefGoogle Scholar
  59. 59.
    Y. Gauduel, S. Berrod, A. Migus, N. Yamada, A. Antonetti, Femtosecond charge separation in organized assemblies: free-radical reactions with pyridine nucleotides in micelles. Biochemistry 27, 2509–2518 (1988)CrossRefGoogle Scholar
  60. 60.
    J. Nguyen, Y. Ma, T. Luo, R.G. Bristow, D.A. Jaffray, Q.B. Lu, Direct ultrafast-electron-transfer reaction unravels high effectiveness of reductive DNA damage. Proc. Nat. Acad. Sci., 108, AA778–11783 (2011)Google Scholar
  61. 61.
    L. Sanche, Beyond radical thinking. Nature 461, 358–359 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    E. Alizadeh, L. Sanche, Precursors of solvated electrons in radiological physics and chemistry. Chem. Rev. 112, 5578–5602 (2012)CrossRefGoogle Scholar
  63. 63.
    Y. Gauduel, M. Sander, H. Gelabert, Ultrafast reactivity of IR-excited electron in aqueous ionic solutions. J. Phys. Chem. A 102, 7795–7803 (1998)CrossRefGoogle Scholar
  64. 64.
    Y. Gauduel, H. Gelabert, F. Guilloud, Real-time probing of a three-electron bonded radical: Ultrafast one-electron reduction of a disulfide biomolecule. J. Am. Chem. Soc. 122, 5082–5091 (2000)CrossRefGoogle Scholar
  65. 65.
    Y. Gauduel, A. Hallou, B. Charles, Short-time water caging and elementary prehydration redox reactions in ionic environments. J. Phys. Chem. A 107, 2011–2024 (2003)CrossRefGoogle Scholar
  66. 66.
    E.R. Bittner, P.J. Rossky, Quantum decoherence in mixed quantum-classical systems nonadiabatic processes. J. Phys. Chem. 103, 8130–8143 (1995)CrossRefGoogle Scholar
  67. 67.
    T.H. Murphrey, P.J. Rossky, Quantum dynamics simulation with approximate eigenstates. J. Chem. Phys 103, 6665 (1995)ADSCrossRefGoogle Scholar
  68. 68.
    B.J. Schwartz, P.J. Rossky, Aqueous solvation dynamics with a quantum mechanical solute: computer simulation studies of the photoexcited hydrated electron. J. Chem. Phys. 101, 6902–6916 (1994)ADSCrossRefGoogle Scholar
  69. 69.
    O.V. Prezhdo, P.J. Rossky, Solvent mode participation in the nonradiative relaxation of the hydrated electron. J. Phys. Chem. 100, 17094 (1996)CrossRefGoogle Scholar
  70. 70.
    L. Turi, P.J. Rossky, Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem. Rev. 112, 5641–5674 (2012)CrossRefGoogle Scholar
  71. 71.
    Q.B. Lu, Effects and applications of ultrashort-lived prehydrated electrons in radiation biology and radiotherapy of cancer. Mut. Res. Rev. 704, 190–199 (2010)CrossRefGoogle Scholar
  72. 72.
    P. Lopez-Tarifa, M.P. Gaigeot, R. Vuilleumier, I. Tavernelli, M. Alcami, F. Martin, M.A.H. du Penhoat, M.F. Politis, Ultrafast damage following radiation-induced oxidation of uracil in aqueous solution. Angew. Chem. Int. Ed. 52, 3160–3163 (2013)CrossRefGoogle Scholar
  73. 73.
    S. Minardi, C. Milián, D. Majus, A. Gopal, G. Tamošauskas, A. Couairon, T. Pertsch, A. Dubietis, Energy deposition dynamics of femtosecond pulses in water. Appl. Phys. Lett. 105, 224104 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    M.H. Elkins, H.L. Williams, A.T. Shreve, D.M. Neumark, Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    J. Savolainen, F. Uhlig, S. Ahmed, P. Hamm, P. Jungwirth, Direct observation of the collapse of the delocalized excess electron in water. Nat. Chem. 6, 687–701 (2014)Google Scholar
  76. 76.
    Y.A. Gauduel, V. Malka, Ultrafast sub-nanometric spatial accuracy of a fleeting quantum probe interaction with a biomolecule: innovating concept for spatio-temporal radiation biomedicine, in SPIE Proceedings, vol. 8954, 89540A1–12 (2014)Google Scholar
  77. 77.
    H. Blattmann, J.O. Gebbers, E. Brauer-Krisch, A. Bravin, G. Le Duc, W. Burkard, M. Di Michiel, V. Djonov, D.N. Slatkin, J. Stepanek, J. Laissue, Applications of synchrotron X-rays to radiotherapy. Nucl. Instrum. Methods Phys. Res. Sect. A 548, 17–22 (2005)ADSCrossRefGoogle Scholar
  78. 78.
    K.M. Prise, New advances in radiation biology. Occup. Med. 56, 156–161 (2006)CrossRefGoogle Scholar
  79. 79.
    A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Physics of ion beam cancer therapy: a multiscale approach. Phys. Rev. E, 79, 011909 (2009)Google Scholar
  80. 80.
    C. DesRosiers, V. Moskin, C. Minsong, Laser-plasma generated very high energy electrons in radiation therapy of the prostate, in SPIE Proceedings, vol. 6881 (2008), pp. 688109–1Google Scholar
  81. 81.
    J. Tajima, D. Habs, X. Yan, Laser acceleration of ions for radiation therapy. Rev. Acc. Sci. Tech. 2, 201–228 (2009)CrossRefGoogle Scholar
  82. 82.
    S.D. Kraft, C. Richter, K. Zeil, M. Baumann, E. Beyreuther, S. Bock, M. Bussmann, T.E. Cowan, Y. Dammene, W. Enghardt, U. Helbig, L. Karsch, T. Kluge, L. Laschinsky, E. Lessmann, J. Metzkes, D. Naumburger, R. Sauerbrey, M. Schürer, M. Sobiella, J. Woithe, U. Schramm, J. Pawelke, Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J. Phys. 12, 085003 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    K.W.D. Ledingham, P.R. Bolton, N. Shikazono, C.M.C. Ma, Towards laser driven hadron cancer radiotherapy: a review of progress. Appl. Sci Basel 4, 402–443 (2014)CrossRefGoogle Scholar
  84. 84.
    U. Masood, M. Bussmann, T. Cowan, W. Engardt, L., Karsch, F. Kroll, U. Schramm, J. Pawelke, A compact solution for ion beam therapy with laser accelerated proton. Appl. Phys. B., Lasers and Optics, 117, 41–52 (2014)Google Scholar
  85. 85.
    Y.E. Dubrova, M. Plumb, B. Gutierrez, E. Boulton, A.J. Jeffreys, Transgenerational mutation by radiation. Nature 405, 37 (2000)ADSCrossRefGoogle Scholar
  86. 86.
    W.R. Hendee, G.S. Ibbott, E.G. Hendee, Radiation therapy physics (Wiley-Liss Ed., 2005)Google Scholar
  87. 87.
    C. Von Sonntag (ed.), Free-radical-Induced DNA Damage and its Repair (Springer, Heidelberg, 2006)Google Scholar
  88. 88.
    Y. Horowitz (ed.), Microdosimetric Response of Physical and Biological Systems to Low and High Let Radiations: Theory and Appplication to Dosimetry (Elsevier, Amsterdam, 2006)Google Scholar
  89. 89.
    M. Shukla, J. Leszczynski, Radiation Induced Molecular Phenomena in Nucleic Acids: A Comprehensive Theoretical and Experimental Analysis (Springer Ed., 2008)Google Scholar
  90. 90.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Electron-induced damage of DNA and its compenents: experiments and theoretical models. Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    D. Verellen, G. Soete, N. Linthout, S. Van Acker, P. De Roover, V. Vinh-Hung, J. Van de Steen, G. Storme, Quality assurance of a system for improved target localization and patient set-up. Rad. Oncol. 67, 129–141 (2003)CrossRefGoogle Scholar
  92. 92.
    Y.A. Gauduel (ed.), Spatio-temporal radiation biology: transdisciplinary advances for medical applications. Mut. Res. Rev. 704, 214 (2010)Google Scholar
  93. 93.
    M. Orth, K. Lauber, M. Miyazi, A.A. Frield, M.L. Li, C. Maihafer, L. Schuttrumpf, A. Ernst, O.M.M Niemoller, C. Belka, Current concepts in clinical radiation oncology. Rad. Env. Biophys. 53, 1–29 (2014)Google Scholar
  94. 94.
    S. Feuerhahn, J.M. Egly, Tool to study DNA repair: what’s in the box? Trends Genet. 24, 467–474 (2008)CrossRefGoogle Scholar
  95. 95.
    M. Shukla, J. Leszczynski, Radiation Induced Molecular Phenomena in Nucleic Acids: A Comprehensive Theoretical and Experimental Analysis (Springer Ed., 2008)Google Scholar
  96. 96.
    X. Kong, S.K. Mohanty, J. Stephene, J.T. Feale, V. Gomez-Godinez, L.Z. Shi et al., Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res. 37, 2–14 (2009)CrossRefGoogle Scholar
  97. 97.
    E. Beyreuther, W. Enghardt, M. Kaluza, L. Karsch, L. Laschinsky, E. Lessmann, M. Nicolai, J. Pawelke, C. Richter, R. Sauerbrey, H.P. Schlenvoigt, M. Baumann, Establisment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons. Med. Phys. 37, 1393–1400 (2010)CrossRefGoogle Scholar
  98. 98.
    C. Richter, I. Karsch, Y. Dammene, S.D. Kraft, J. Metzkes, U. Schramm, M. Schürer, M. Sobiella, A. Weber, K. Zeil, Pawelke, J.A dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons. Phys. Med. Biol. 56, 1529–1543 (2011)CrossRefGoogle Scholar
  99. 99.
    S. Auer, V. Hable, C. Greubel, G.A. Drexler, T.E. Schmid, C. Belka, G. Dollinger, A.A. Friedl, Survival of tumor cells after proton irradiation with ultra-high dose rates. Rad. Oncol. 6, 139 (2011)CrossRefGoogle Scholar
  100. 100.
    V. Malka, in Laser Plasma Accelerators, Laser-Plasma Interactions and Applications, eds. by P. McKenna, D. Neely, R. Bingham and D. Jaroszynski (Springer International Publishing, Swizerland, 2013), pp. 231–301Google Scholar
  101. 101.
    Y. Glinec, J. Faure, V. Malka, T. Fuchs, H. Szymanoswki, U. Oelke, Radiotherapy with laser-plasma accelerators: Monte-Carlo simulation of dose deposited by an experimental quasimonoenergetic electron beam. Med. Phys. 33, 155–162 (2006)CrossRefGoogle Scholar
  102. 102.
    M. Kramer, M. Durante, Ion beam transport calculations and treatment plans in particle therapy. Eur. Phys. J. D 60, 195–202 (2010)ADSCrossRefGoogle Scholar
  103. 103.
    J.F. Hainfeld, F.A. Dimanian, D.N. Slatkin, H.M. Smilowitz, Radiotherapy enhancement with gold nanoparticles. J. Pharm. Phramacol. 60, 977–985 (2008)CrossRefGoogle Scholar
  104. 104.
    S.X. Zhang, J. Gao, T.A. Buchholtz, Z. Wang, M.R. Salehpour, R.A. Drezek, T. Yu, Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed. Microdevices 11, 925–933 (2009)CrossRefGoogle Scholar
  105. 105.
    W.N. Rahman, N. Bishara, T. Ackerly, C.F. He, P. Jackson, C. Wong, R. Davidson, M. Geso, Nanomed. Nanotech. Biol Med. 5, 136–142 (2009)CrossRefGoogle Scholar
  106. 106.
    S.J. McMahon, W.B. Hyland, M.F. Muir, J.A. Coulter, S. Jain, K.T. Butterworth, G. Schettino, G.R. Dickson, A.R. Hounsell, J.M. O’Sullivan, K.M. Prise, D.G. Hirst, F.J. Currell, Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Reports 1, 18 (2011)ADSGoogle Scholar
  107. 107.
    E. Porcel, O. Tillement, F. Lux, P. Mowat, N. Usami, K. Kobayashi, Y. Furusawa, C. LeSech, S. Li, S. Lacombe, Gadolinium-based nanoparticles ti improve the hadrontherapy performances. Nanomed. Nanothec. Biophys. Med. 10, 1601–1608 (2014)CrossRefGoogle Scholar
  108. 108.
    N. Gault, O. Rigaud, J.L. Poncy, J.L. Lefaix, Biochemical alterations in human cells irradiated with alpha particles delivered by macro- or microbeams. Radiat. Res. 167, 551–562 (2007)CrossRefGoogle Scholar
  109. 109.
    G. Schettino, M. Ghita, K.M. Prise, Spatio-temporal analysis of DNA damage repair using the X-ray microbeam. Eur. Phys. J. D 60, 157–161 (2010)ADSCrossRefGoogle Scholar
  110. 110.
    H. Kempf, M. Bleicher, M. Meyer-Hermann, Spatio-temporal cell dynamics in tumour speroid irradiation. Eur. Phys. J., D, 60, 177–193 (2010)Google Scholar
  111. 111.
    A.L. Hein, M.M. Ouellette, Y. Yan, Radiation-induced signaling pathways that promote cancer cell survival. Int. J. Oncol. 45, 1813–1819 (2014)Google Scholar
  112. 112.
    C. Tillman, G. Grafström, A.C. Jonsson, I. Mercer, S. Mattsson, S.E. Stand, S. Svanberg, Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma X-ray source. Radiobiol. 213, 860–865 (1999)Google Scholar
  113. 113.
    K. Shinohara, H. Nakano, N. Miyazaki, M. Tago, T. Kodama, Effects of single-pulse (≤1 ps) X-rays from laser-produced plasmas on mammalian cells. J. Radiat. Res. 45, 509–514 (2004)CrossRefGoogle Scholar
  114. 114.
    A. Yogo, K. Sato, M. Nishikino, M. Mori, T. Teshima, K. Numasaki, M. Murakani, Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett. 94, 181502 (2009)ADSCrossRefGoogle Scholar
  115. 115.
    K. Sato, M. Nishikino, Y. Okano, S. Ohshima, N. Hasegawa, M. Ishino, T. Kawachi, H. Numasaki, T. Teshima, H. Nishimura, γ-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation. Rad. Res., 174, 436–445 (2010)Google Scholar
  116. 116.
    P.L. Olive, J.P. Banath, The comet assay: a method to measure DNA damage in individual cells. Nat. Protocols 1, 23–26 (2006)CrossRefGoogle Scholar
  117. 117.
    O. Rigaud, N.O. Fortunel, P. Vaigot, E. Cadio, M.T. Martin, O. Lundh, J. Faure, C. Rechatin, V. Malka, Y.A. Gauduel, Exploring ultrashort high-energy electron-induced damage in human carcinoma cells. Cell Death Dis. 1, e73 (2010)CrossRefGoogle Scholar
  118. 118.
    S.S. Lo, B.S. Teh, J.J. Lu, T.E. Shefter (eds.), Stereotactic Body Radiation Therapy (Springer, 2012)Google Scholar
  119. 119.
    S.M. Huber, L. Butz, B. Stegen, D. Klumpp, N. Braun, P. Ruth, F. Eckert, Ionizing radiation, ion transports and radioresistance of cancer cells. Front. Physiol. 14, 212 (2013)Google Scholar
  120. 120.
    A. Giulietti, N. Bourgeois, T. Ceciotti, X. Davoine, S. Dobosz, P. D’Oliveira, M. Galimberti, J. Galy, A. Gamucci, D. Giulietti, L.A. Gizzi, D. Hamilton, E. Lefebvre, L. Labata, J.R. Marques, P. Monot, A. Popescu, F. Reau, G. Sarri, P. Tomassini, P. Martin, Intense gamma-ray source in the giant dipole resonance range driven by 10-TW laser pulses Phys. Rev. Lett. 101, 105002 (2008)ADSCrossRefGoogle Scholar
  121. 121.
    T. Fuchs, H. Szymanowski, U. Oelfke, Y. Glinec, C. Rechatin, J. Faure, V. Malka, Treatment planning for laser-accelerated very-high energy electrons. Phys. Med. Biol. 54, 3315–3328 (2009)CrossRefGoogle Scholar
  122. 122.
    T. Elsässer, R. Cunrath, M. Krämer, M. Scholz, Impact of track structure calculations on biological treatment planning in ion radiotherapy. New J. Phys., 10, 07005.1–07005.17 (2008)Google Scholar
  123. 123.
    E. Guillaume, A. Döpp, C. Thaury, A. Lifschitz, J.P. Goddet, A. Tafzi, F. Sylla, G. Iaquanello, T. Lefrou, P. Rousseau, K. Ta Phuoc , V. Malka, Physics of fully-loaded laser-plasma accelerators. Phys. Rev. ST Accel. Beams, 18, 061301 (2015)Google Scholar
  124. 124.
    E. Beyreuther, L. Karsch, L. Laschinsky, E. Lebmann, D. Namburger, M. Oppelt, C. Richter, M. Schürer, J. Woithe, J. Pawelke, Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate. Int. J. Rad. Biol. 91, 643–652 (2015)CrossRefGoogle Scholar
  125. 125.
    M. Weik, R.B. Ravelli, G. Kryger, S. Mc Sweeney, M.L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, J.L. Sussman, Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc. Nat. Acad. Sci. USA, 97, 623–628 (2000)Google Scholar
  126. 126.
    P.J. Coastes, S.A. Lorimore, E.G. Wright, Damaging and prospective cell signalling in the untargeted effects of ionizing radiation. Mut. Res. 568, 5–20 (2004)CrossRefGoogle Scholar
  127. 127.
    I.B. Bersuker, The Jahn-Teller Effects and Vibronic Interactions in Modern Chemistry (Plenum Press Ed., New York, 1984)Google Scholar
  128. 128.
    L.M. Mendes Soares, J. Valcarcel, The expanding transcriptome: the genoma as the “Book of Sand”. EMBO J. 25, 923–931 (2006)CrossRefGoogle Scholar
  129. 129.
    M.P. Gaigeot, R. Vuilleumier, C. Stia, M.E. Galassi, R. Rivarola, B. Gervais, M.F. Politis, A multi-scale ab initio theoretical study of the production of free radicals in swift ion tracks in liquid water. J. Phys. B 40, 1–12 (2007)MathSciNetADSCrossRefGoogle Scholar
  130. 130.
    I. Tavernelli, M.P. Gaigeot, R. Vuilleumier, C. Stia, M.A. Hervé du Penhoat, M.F. Politis, Time dependent density functional theory molecular dynamics simulations of liquid water radiolysis. ChemPhysChem 9, 2099–2103 (2008)CrossRefGoogle Scholar
  131. 131.
    A. Ogata, T. Kondoh, J. Yang, A. Yoshida, Y. Yoshida, LWFA of atto-second and femtosecond bunches for pulse radiolysis. Int. J. Mod. Phys. 21, 447–459 (2007)ADSCrossRefGoogle Scholar
  132. 132.
    H.P. Schenvoigt, K. Haupt, A. Debus, F. Budde, O. Jäckel, S. Pfotenhauer, H. Schwoerer, E. Rohwer, J.G. Gallacher, E. Brunetti, R.P. Shanks, S.M. Wiggins, D.A. Jarosyznski, A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130–133 (2008)CrossRefGoogle Scholar
  133. 133.
    B. Grosswendt, Nanodosimetry, from radiation physics to radiation biology. Rad. Protec. Dos. 115, 1–9 (2005)CrossRefGoogle Scholar
  134. 134.
    V. Conte, P. Colautti, B. Grosswendt, D. Moro, L. De Nardo, Track structure of light ions: experiments and simulations. New J. Phys. 14, 093010 (2012)ADSCrossRefGoogle Scholar
  135. 135.
    X. Guano, H. Mcleod, Strategies for enzyme/prodrug cancer therapy. Clin. Canc. Res. 7, 3314–3324 (2001)Google Scholar
  136. 136.
    F. Kratz, I.A. Müller, C. Ryppa, A. Warnecke, Prodrug strategies in anticancer chemotherapy. ChemMedChem 3, 20–53 (2008)CrossRefGoogle Scholar
  137. 137.
    Y. Zheng, D.J. Hunting, P. Ayotte, L. Sanche, Role of secondary low-energy electrons in the concomitant chemoradiation therapy of cancer. Phys. Rev. Lett. 100, 198101 (2008)ADSCrossRefGoogle Scholar
  138. 138.
    J. Biau, F. Devun, W. Jdey, E. Kotula, M. Quanz, E. Chautard, M. Sayarath, S.S. Sun, P. Verrelle, M. Dutreix, A Preclinical study combining the DNA Repair Inhibitor Dbait with radiotherapy for the treatment of melanoma. Neoplasia 16, 835–844 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.LOA, ENSTA ParisTech, CNRSEcole Polytechnique, University Paris-SaclayPalaiseauFrance

Personalised recommendations