Skip to main content

Nonlinear Geometry of Banach Spaces

  • Chapter
  • First Online:
Topics in Banach Space Theory

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 233 ))

  • 4268 Accesses

Abstract

A Banach space is, by its nature, also a metric space. When we identify a Banach space with its underlying metric space, we choose to forget its linear structure. The fundamental question of nonlinear geometry is to determine to what extent the metric structure of a Banach space already determines its linear structure. What can be said of two Banach spaces that are Lipschitz-isomorphic? uniformly homeomorphic? or coarsely Lipschitz-isomorphic in the spirit of M. Gromov’s geometric theory of groups? These questions are still partly open, and investigating them requires some quite technical tools. In this chapter, we will consider only basic techniques whose purpose is to produce specific linear maps from nonlinear ones (typically, Lipschitz maps).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Aharoni, Every separable metric space is Lipschitz equivalent to a subset of c 0 +. Isr. J. Math. 19, 284–291 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Aharoni, J. Lindenstrauss, Uniform equivalence between Banach spaces. Bull. Am. Math. Soc. 84 (2), 281–283 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Aharoni, J. Lindenstrauss, An extension of a result of Ribe. Isr. J. Math. 52 (1–2), 59–64 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces. Stud. Math. 57 (2), 147–190 (1976)

    MathSciNet  MATH  Google Scholar 

  5. P. Assouad, Remarques sur un article de Israel Aharoni sur les prolongements lipschitziens dans c 0. (Isr. J. Math. 19, 284–291 (1974)); Isr. J. Math. 31 (1), 97–100 (1978)

    Google Scholar 

  6. S. Banach, Théorie des opérations linéaires. Monografje Matematyczne (Warszawa, 1932)

    Google Scholar 

  7. R.G. Bartle, L.M. Graves, Mappings between function spaces. Trans. Am. Math. Soc. 72, 400–413 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Baudier, N.J. Kalton, G. Lancien, A new metric invariant for Banach spaces. Stud. Math. 199 (1), 73–94 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1. American Mathematical Society Colloquium Publications, vol. 48 (American Mathematical Society, Providence, 2000)

    Google Scholar 

  10. L. Borel-Mathurin, The Szlenk index of Orlicz sequence spaces. Proc. Am. Math. Soc. 138 (6), 2043–2050 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic. Proc. Am. Math. Soc. 96 (2), 221–226 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bourgain, Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms, Geometrical Aspects of Functional Analysis (1985/1986). Lecture Notes in Mathematics, vol. 1267 (Springer, Berlin, 1987), pp. 157–167

    Google Scholar 

  13. R. Cauty, Un espace métrique linéaire qui n’est pas un rétracte absolu. Fundam. Math. 146 (1), 85–99 (1994) (French, with English summary)

    Google Scholar 

  14. R. Cauty, Solution du problème de point fixe de Schauder. Fundam. Math. 170 (3), 231–246 (2001) (French, with English summary)

    Google Scholar 

  15. J.P.R. Christensen, On sets of Haar measure zero in abelian Polish groups, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972) (1973), pp. 255–260

    Google Scholar 

  16. H. Corson, V. Klee, Topological classification of convex sets, in Proceedings of Symposia in Pure Mathematics, vol. VII (American Mathematical Society, Providence, 1963), pp. 37–51

    Google Scholar 

  17. R. Deville, G. Godefroy, V.E. Zizler, The three space problem for smooth partitions of unity and C(K) spaces. Math. Ann. 288 (4), 613–625 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64 (Longman Scientific and Technical, Harlow, 1993)

    Google Scholar 

  19. Y. Dutrieux, G. Lancien, Isometric embeddings of compact spaces into Banach spaces. J. Funct. Anal. 255 (2), 494–501 (2008)

    Google Scholar 

  20. S. Dutta, A. Godard, Banach spaces with property (M) and their Szlenk indices. Mediterr. J. Math. 5 (2), 211–220 (2008)

    Google Scholar 

  21. P. Enflo, On the nonexistence of uniform homeomorphisms between L p -spaces. Ark. Mat. 8, 103–105 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Enflo, Uniform structures and square roots in topological groups. I, II. Isr. J. Math. 8, 230–252 (1970); Isr. J. Math. 8, 253–272 (1970)

    Google Scholar 

  23. T. Figiel, On nonlinear isometric embeddings of normed linear spaces. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 16, 185–188 (1968) (English, with loose Russian summary)

    Google Scholar 

  24. G. Godefroy, N.J. Kalton, Lipschitz-free Banach spaces. Stud. Math. 159 (1), 121–141 (2003); Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birth-day

    Google Scholar 

  25. G. Godefroy, N.J. Kalton, G. Lancien, Subspaces of c 0(N ) and Lipschitz isomorphisms. Geom. Funct. Anal. 10 (4), 798–820 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Godefroy, N.J. Kalton, G. Lancien, Szlenk indices and uniform homeomorphisms. Trans. Am. Math. Soc. 353 (10), 3895–3918 (2001) (electronic)

    Google Scholar 

  27. E. Gorelik, The uniform nonequivalence of L p and l p . Isr. J. Math. 87 (1–3), 1–8 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Heinrich, P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Stud. Math. 73 (3), 225–251 (1982)

    MathSciNet  MATH  Google Scholar 

  29. W.B. Johnson, E. Odell, Subspaces of L p which embed into l p . Compos. Math. 28, 37–49 (1974)

    MathSciNet  MATH  Google Scholar 

  30. W.B. Johnson, J. Lindenstrauss, G. Schechtman, Banach spaces determined by their uniform structures. Geom. Funct. Anal. 6 (3), 430–470 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. M.I. Kadets, A proof of the topological equivalence of all separable infinite-dimensional Banach spaces. Funkcional. Anal. i Priložen 1, 61–70 (1967) (Russian)

    MathSciNet  MATH  Google Scholar 

  32. N.J. Kalton, M-ideals of compact operators. Ill. J. Math. 37 (1), 147–169 (1993)

    MathSciNet  MATH  Google Scholar 

  33. N.J. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate. Can. Math. Bull. 38 (2), 218–222 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. N.J. Kalton, Lipschitz and uniform embeddings into . Fund. Math. 212 (1), 53–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. N.J. Kalton, The uniform structure of Banach spaces. Math. Ann. 354 (4), 1247–1288 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. N.J. Kalton, Examples of uniformly homeomorphic Banach spaces. Isr. J. Math. 194 (1), 151–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. N.J. Kalton, Uniform homeomorphisms of Banach spaces and asymptotic structure. Trans. Am. Math. Soc. 365 (2), 1051–1079 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. N.J. Kalton, G. Lancien, Best constants for Lipschitz embeddings of metric spaces into c 0. Fund. Math. 199 (3), 249–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. N.J. Kalton, N.L. Randrianarivony, The coarse Lipschitz geometry of l p l q . Math. Ann. 341 (1), 223–237 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. O.-H. Keller, Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum. Math. Ann. 105 (1), 748–758 (1931) (German)

    Google Scholar 

  41. G. Lancien, A short course on nonlinear geometry of Banach spaces, in Topics in Functional and Harmonic Analysis. Theta Series in Advanced Mathematics, vol. 14 (Theta, Bucharest, 2013), pp. 77–101

    Google Scholar 

  42. J. Lindenstrauss, On nonlinear projections in Banach spaces. Mich. Math. J. 11, 263–287 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Lindenstrauss, On nonseparable reflexive Banach spaces. Bull. Am. Math. Soc. 72, 967–970 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Lindenstrauss, E. Matoušková, D. Preiss, Lipschitz image of a measure-null set can have a null complement. Isr. J. Math. 118, 207–219 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Mankiewicz, On Lipschitz mappings between Fréchet spaces. Stud. Math. 41, 225–241 (1972)

    MathSciNet  MATH  Google Scholar 

  46. S. Mazur, Über konvexe Mengen in linearen normierten Räumen. Stud. Math. 4, 70–84 (1933)

    MATH  Google Scholar 

  47. S. Mazur, S. Ulam, Sur les transformations isométriques d’espaces vectoriels normés. C. R. Acad. Sci. Paris 194, 946–948 (1932)

    MATH  Google Scholar 

  48. V.D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball. Usp. Mat. Nauk 26 (6), 73–149 (1971) (Russian)

    MathSciNet  Google Scholar 

  49. J. Pelant, Embeddings into c 0. Topol. Appl. 57 (2–3), 259–269 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. D. Preiss, Geometric measure theory in Banach spaces, in Handbook of the Geometry of Banach Spaces, vol. 2 (North-Holland, Amsterdam, 2003), pp. 1519–1546

    Google Scholar 

  51. M. Ribe, On uniformly homeomorphic normed spaces. II. Ark. Mat. 16 (1), 1–9 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Ribe, Existence of separable uniformly homeomorphic nonisomorphic Banach spaces. Isr. J. Math. 48 (2–3), 139–147 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  53. B. Sims, D. Yost, Linear Hahn–Banach extension operators. Proc. Edinb. Math. Soc. (2) 32 (1), 53–57 (1989)

    Google Scholar 

  54. S.J. Szarek, On the existence and uniqueness of complex structure and spaces with “few” operators. Trans. Am. Math. Soc. 293 (1), 339–353 (1986)

    MathSciNet  MATH  Google Scholar 

  55. H. Toruńczyk, Characterizing Hilbert space topology. Fund. Math. 111 (3), 247–262 (1981)

    MathSciNet  MATH  Google Scholar 

  56. J. Väisälä, A proof of the Mazur–Ulam theorem. Am. Math. Mon. 110 (7), 633–635 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Vogt, Maps which preserve equality of distance. Stud. Math. 45, 43–48 (1973)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albiac, F., Kalton, N.J. (2016). Nonlinear Geometry of Banach Spaces. In: Topics in Banach Space Theory. Graduate Texts in Mathematics, vol 233 . Springer, Cham. https://doi.org/10.1007/978-3-319-31557-7_14

Download citation

Publish with us

Policies and ethics