Advertisement

Brain–Machine Interface: System Optimization

  • Amir ZjajoEmail author
Chapter

Abstract

To develop neural prostheses capable of interfacing with neuron cells and neural networks, multichannel probes and the electrodes need to be customized to the anatomy and morphology of the recording site. The increasing density and the miniaturization of the functional blocks in these multielectrode arrays, however, presents significant circuit design challenge in terms of area, power, and the scalability, reliability and expandability of the recording system. In this chapter, we propose a novel method for power per area (PPA) optimization under yield constrains in multichannel neural recording interface. Using a sequence of minimizations with iteratively generated low-dimensional subspaces, our approach renders consistently improved PPA ratio and imposes no restrictions on the distribution of process parameters or how the data enters the constraints. The proposed method can be used with any variability model and subsequently any correlation model, and is not restricted by any particular performance constraint. The experimental results, obtained on the multichannel neural recording interface circuits implemented in CMOS 90 nm technology, demonstrate power savings of up to 26 % and area of up to 22 % without yield penalty.

Keywords

Flicker Noise Lyapunov Equation Noise Power Spectral Density Nonlinear Circuit Stochastic Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Buzsaki, Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004)CrossRefGoogle Scholar
  2. 2.
    F.A. Mussa-Ivaldi, L.E. Miller, Brain-machine interfaces: Computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 26(6), 329–334 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Micropower CMOS-integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Trans. Biomed. Circ. Syst. 3(1), 1–10 (2009)CrossRefGoogle Scholar
  4. 4.
    A.M. Sodagar et al., An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE J. Solid-State Circuits 44(9), 2591–2604 (2009)CrossRefGoogle Scholar
  5. 5.
    B.K. Thurgood et al., A wireless integrated circuit for 100-channel charge-balanced neural stimulation. IEEE Trans. Biomed. Circuits Syst. 3(6), 405–414 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Kim, R. Normann, R. Harrison, F. Solzbacher, Preliminary study of the thermal impact of a microelectrode array implanted in the brain, in Proceedings of IEEE International Conference of Engineering in Medicine and Biology Society (2006), pp. 2986–2989Google Scholar
  7. 7.
    X. Zou et al., A 100-channel 1-mW implantable neural recording IC. IEEE Trans. Circuits Syst. I. Regul. Pap. 60(10), 2584–2596 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Chae et al., A 128-channel 6 mw wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312–321 (2009)CrossRefGoogle Scholar
  9. 9.
    R.F. Yazicioglu et al., A 200 W eight-channel EEG acquisition ASIC for ambulatory EEG systems. ieee international solid-state circuits conference digest of technical papers (2008), pp. 164–165Google Scholar
  10. 10.
    J. Lee, H.-G. Rhew, D.R. Kipke, M.P. Flynn, A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J. Solid-State Circuits 45(9), 1935–1945 (2010)CrossRefGoogle Scholar
  11. 11.
    X.D. Zou et al., A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J. Solid-State Circuits 44, 1067–1077 (2009)CrossRefGoogle Scholar
  12. 12.
    R. Brodersen et al., Methods for true power minimization, in Proceedings of IEEE International Conference on Computer-Aided Design (2002), pp. 35–42Google Scholar
  13. 13.
    A. Bhavnagarwala, B. Austin, K. Bowman, J.D. Meindl, A minimum total power methodology for projecting limits on CMOS GSI. IEEE Trans. Very Large Integration (VLSI) Syst. 8(6), 235–251 (2000)Google Scholar
  14. 14.
    G. Yu, P. Li, Yield-aware hierarchical optimization of large analog integrated circuits, in Proceedings of IEEE International Conference on Computer-Aided Design (2008), pp. 79–84Google Scholar
  15. 15.
    F. Schenkel, et al., Mismatch analysis and direct yield optimization by specwise linearization and feasibility-guided search, in Proceedings of IEEE Design Automation Conference, pp. 858–863 (2001)Google Scholar
  16. 16.
    T. Mukherjee, L.R. Carley, R.A. Rutenbar, Efficient handling of operating range and manufacturing line variations in analog cell synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(8), 825–839 (2000)CrossRefGoogle Scholar
  17. 17.
    A. Zjajo, N. van der Meijs, R. van Leuken, Statistical power optimization of deep-submicron digital CMOS circuits based on structured perceptron, in Proceedings of IEEE International Conference on Integrated Circuits (2014), pp. 95–98Google Scholar
  18. 18.
    S. Seth, B. Murmann, Design and optimization of continuous-time filters using geometric programming, in Proceedings of IEEE International Symposium on Circuits and Systems (2014), pp. 2089–2092Google Scholar
  19. 19.
    A. Zjajo, C. Galuzzi, R. van Leuken, Sequential power per area optimization of multichannel neural recording interface based on dual quadratic programming, in Proceedings of IEEE International Conference on Neural Engineering (2015), pp. 9–12Google Scholar
  20. 20.
    M. Grigoriu, On the spectral representation method in simulation. Probab. Eng. Mech. 8, 75–90 (1993)CrossRefGoogle Scholar
  21. 21.
    M. Loève, Probability Theory (D. Van Nostrand Company Inc., Princeton, 1960)Google Scholar
  22. 22.
    R. Ghanem, P.D. Spanos, Stochastic Finite Element: A Spectral Approach (Springer, Berlin, 1991)Google Scholar
  23. 23.
    P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, C. Spanos, Modeling within-die spatial correlation effects for process-design co-optimization, in Proceedings of IEEE International Symposium on Quality of Electronic Design (2005), pp. 516–521Google Scholar
  24. 24.
    J. Xiong, V. Zolotov, L. He, Robust extraction of spatial correlation, in Proceedings of IEEE International Symposium on Physical Design (2006), pp. 2–9Google Scholar
  25. 25.
    A. Hodgkin, A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  26. 26.
    R.F. Fox, Y.-N. Lu, Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E. 49, 3421–3431 (1994)Google Scholar
  27. 27.
    A. Saarinen, M.L. Linne, O. Yli-Harja, Stochastic differential equation model for cerebellar granule cell excitability. PLoS Comput. Biol. 4(2), 1–11 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A.C. West, J. Newman, Current distributions on recessed electrodes. J. Electrochem. Soc. 138(6), 1620–1625 (1991)CrossRefGoogle Scholar
  29. 29.
    Z. Yang, Q. Zhao, E. Keefer, W. Liu, Noise characterization, modeling, and reduction for in vivo neural recording, in Advances in Neural Information Processing Systems (2010), pp. 2160–2168Google Scholar
  30. 30.
    P.R. Gray, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, 1984)Google Scholar
  31. 31.
    A. Demir, E. Liu, A. Sangiovanni-Vincentelli, Time-domain non-Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations, in Proceedings of IEEE International Conference on Computer-Aided Design (1994), pp. 598–603Google Scholar
  32. 32.
    J.H. Fischer, Noise sources and calculation techniques for switched capacitor filters. IEEE J. Solid-State Circuits 17(4), 742–752 (1982)CrossRefGoogle Scholar
  33. 33.
    T. Sepke, P. Holloway, C.G. Sodini, H.-S. Lee, Noise analysis for comparator-based circuits. IEEE Trans. Circuits Syst. I 56(3), 541–553 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    C. Michael, M. Ismail, Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits (Kluwer, Boston, 1993)Google Scholar
  35. 35.
    H. Zhang, Y. Zhao, A. Doboli, ALAMO: an improved σ-space based methodology for modeling process parameter variations in analog circuits, in Proceedings of IEEE Design, Automation and Test in Europe Conference (2006), pp. 156–161Google Scholar
  36. 36.
    M. Pelgrom, A. Duinmaijer, A. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)CrossRefGoogle Scholar
  37. 37.
    R. López-Ahumada, R. Rodríguez-Macías, FASTEST: a tool for a complete and efficient statistical evaluation of analog circuits, dc analysis. in Analog Integrated Circuits and Signal Processing, vol 29, no 3 (Kluwer Academic Publishers, The Netherlands, 2001), pp. 201–212Google Scholar
  38. 38.
    G. Biagetti, S. Orcioni, C. Turchetti, P. Crippa, M. Alessandrini, SiSMA-a statistical simulator for mismatch analysis of MOS ICs, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (2002), pp. 490–496Google Scholar
  39. 39.
    B. De Smedt, G. Gielen, WATSON: design space boundary exploration and model generation for analogue and RF IC design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(2), 213–224 (2003)CrossRefGoogle Scholar
  40. 40.
    B. Linares-Barranco, T. Serrano-Gotarredona, On an efficient CAD implementation of the distance term in Pelgrom’s mismatch model. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(8), 1534–1538 (2007)CrossRefGoogle Scholar
  41. 41.
    J. Kim, J. Ren, M.A. Horowitz, Stochastic steady-state and ac analyses of mixed-signal systems, in Proceedings of IEEE Design Automation Conference (2009), pp. 376–381Google Scholar
  42. 42.
    A. Zjajo, J. Pineda de Gyvez, Analog automatic test pattern generation for quasi-static structural test. IEEE Trans. Very Large Scale Integr. VLSI Syst. 17(10), 1383–1391 (2009)CrossRefGoogle Scholar
  43. 43.
    N. Mi, J. Fan, S.X.-D. Tan, Y. Cai, X. Hong, Statistical analysis of on-chip power delivery networks considering lognormal leakage current variations with spatial correlation. IEEE Trans. Circuits Syst. I. Regul. Pap. 55(7), 2064–2075 (2008)MathSciNetCrossRefGoogle Scholar
  44. 44.
    E. Felt, S. Zanella, C. Guardiani, A. Sangiovanni-Vincentelli, Hierarchical statistical characterization of mixed-signal circuits using behavioral modeling, in Proceedings of IEEE International Conference on Computer-Aided Design (1996), pp. 374–380Google Scholar
  45. 45.
    J. Vlach, K. Singhal, Computer Methods for Circuit Analysis and Design (Van Nostrand Reinhold, New York, 1983)Google Scholar
  46. 46.
    L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (Mc Graw-Hill, New York, 1987)zbMATHGoogle Scholar
  47. 47.
    L. Arnold, Stochastic Differential Equations: Theory and Application (Wiley, New York, 1974)zbMATHGoogle Scholar
  48. 48.
    R. Rohrer, L. Nagel, R.G. Meyer, L. Weber, Computationally efficient electronic-circuit noise calculations. IEEE J. Solid-State Circuits 6, 204–213 (1971)CrossRefGoogle Scholar
  49. 49.
    C.D. Hull, R.G. Meyer, A systematic approach to the analysis of noise in mixers. IEEE Trans. Circuits Syst. I. Regul. Pap. 40, 909–919 (1993)CrossRefGoogle Scholar
  50. 50.
    M. Okumura, H. Tanimoto, T. Itakura, T. Sugawara, Numerical noise analysis for nonlinear circuits with a periodic large signal excitation including cyclostationary noise sources. IEEE Trans. Circuits Syst. I. Regul. Pap. 40, 581–590 (1993). SeptCrossRefzbMATHGoogle Scholar
  51. 51.
    P. Bolcato, R. Poujois, A new approach for noise simulation in transient analysis, in Proceedings of IEEE International Symposium on Circuits and Systems (1992)Google Scholar
  52. 52.
    J.-M. Sanz-Serna, Numerical ordinary differential equations versus dynamical systems, in The Dynamics of Numerics and the Numerics of Dynamics, ed. by D.S. Broomhead, A. Iserles (Clarendon Press, Oxford, 1992)Google Scholar
  53. 53.
    A. Sangiovanni-Vincentelli, Circuit simulation. in Computer Design Aids for VLSI Circuits (Sijthoff and Noordhoff, The Netherlands, 1980)Google Scholar
  54. 54.
    P. Heydari, M. Pedram, Model-order reduction using variational balanced truncation with spectral shaping. IEEE Trans. Circuits Syst. I. Regul. Pap. 53(4), 879–891 (2006)MathSciNetCrossRefGoogle Scholar
  55. 55.
    M. Di Marco, M. Forti, M. Grazzini, P. Nistri, L. Pancioni, Lyapunov method and convergence of the full-range model of CNNs. IEEE Trans. Circuits Syst. I. Regul. Pap. 55(11), 3528–3541 (2008)MathSciNetCrossRefGoogle Scholar
  56. 56.
    K.H. Lim, K.P. Seng, L.-M. Ang, S.W. Chin, Lyapunov theory-based multilayered neural network. IEEE Trans. Circuits Syst. II Express Briefs 56(4), 305–309 (2009)CrossRefGoogle Scholar
  57. 57.
    X. Liu, Stability analysis of switched positive systems: a switched linear copositive Lyapunov function method. IEEE Trans. Circuits Syst. II Express Briefs 56(5), 414–418 (2009)CrossRefGoogle Scholar
  58. 58.
    R.H. Bartels, G.W. Stewart, Solution of the matrix equation AX + XB = C. Commun. Assoc. Comput. Mach. 15, 820–826 (1972)Google Scholar
  59. 59.
    N.J. Higham, Perturbation theory and backward error for AX − XB = C. BIT Numer. Math. 33, 124–136 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    T. Penzl, Numerical solution of generalized Lyapunov equations. Adv. Comput. Math. 8, 33–48 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    G.H. Golub, C.F. van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 1996)Google Scholar
  62. 62.
    I. Jaimoukha, E. Kasenally, Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31, 227–251 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    E. Wachspress, Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 1, 87–90 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    J. Li, F. Wang, J. White, An efficient Lyapunov equation-based approach for generating reduced-order models of interconnect, in Proceedings of IEEE Design Automation Conference (1999), pp. 1–6Google Scholar
  65. 65.
    Y. Freund, R.E. Schapire, Large margin classification using the perceptron algorithm. Mach. Learn. 37, 277–296 (1999)CrossRefzbMATHGoogle Scholar
  66. 66.
    I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun, Support vector machine learning for interdependent and structured output spaces, in International Conference on Machine Learning (2004), pp. 1–8Google Scholar
  67. 67.
    A. Dharchoudbury, S.M. Kang, Worst-case analysis and optimization of VLSI circuits performances. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14(4), 481–492 (1995)CrossRefGoogle Scholar
  68. 68.
    B. Murmann, B.E. Boser, A 12-bit 75-ms/s pipelined ADC using open-loop residue amplification. IEEE J. Solid-State Circuits 38(12), 2040–2050 (2003)CrossRefGoogle Scholar
  69. 69.
    T. Sepke et al., Comparator-based switched-capacitor circuits for scaled CMOS technologies, in IEEE International Solid-State Circuit Conference Digest of Technical Papers (2006), pp. 220–221Google Scholar
  70. 70.
    B.R. Gregoire, U.-K. Moon, An over-60db true rail-to-rail performance using correlated level shifting and an opamp with 30db loop gain, in IEEE International Solid-State Circuit Conference Digest of Technical Papers (2008), pp. 540–541Google Scholar
  71. 71.
    A. Zjajo, J. Pineda de Gyvez, Low-Power High-Resolution Analog to Digital Converters (Springer, New York, 2011)CrossRefGoogle Scholar
  72. 72.
    A. Zjajo, M.J. Barragan, J. Pineda de Gyvez, Low-power die-level process variation and temperature monitors for yield analysis and optimization in deep-submicron CMOS. IEEE Trans. Instrum. Meas. 61(8), 2212–2221 (2012)CrossRefGoogle Scholar
  73. 73.
    E.A. Vittoz, Future of analog in the VLSI environment, in Proceedings of IEEE International Symposium on Circuits and Systems (1990), pp. 1372–1375Google Scholar
  74. 74.
    J.E. Niven, S.B. Laughlin, Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211(11), 1792–1804 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations