Advertisement

Neural Signal Quantization Circuits

  • Amir ZjajoEmail author
Chapter
  • 1.6k Downloads

Abstract

Integrated neural implant interface with the brain using biocompatible electrodes provides high yield cell recordings, large channel counts, and access to spike data and/or field potentials with high signal-to-noise ratio. By increasing the number of recording electrodes, spatially broad analysis can be performed that can provide insights into how and why neuronal ensembles synchronize their activity. In this chapter, we present several A/D converter realizations in voltage-, current- and time-domain, respectively, suitable for multichannel neural signal-processing. The voltage-domain SAR A/D converter combines the functionalities of programmable-gain stage and analog to digital conversion, occupies an area of 0.028 mm2, and consumes 1.1 μW of power at 100 kS/s sampling rate. The current-mode successive approximation A/D converter is realized in a 65 nm CMOS technology, and consumes less than 367 nW at 40 kS/s, corresponding to a figure of merit of 14 fJ/conversion-step, while operating from a 1 V supply. A time-based, programmable-gain A/D converter allows for an easily scalable, and power-efficient, implantable, biomedical recording system. The time-domain converter circuit is realized in a 90 nm CMOS technology, operates at 640 kS/s, occupies an area of 0.022 mm2, and consumes less than 2.7 μW corresponding to a figure of merit of 6.2 fJ/conversion-step.

Keywords

Clock Cycle Parasitic Capacitance Total Harmonic Distortion Differential Pair Input Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.A.L. Nicolelis, Actions from thoughts. Nature 409, 403–407 (2001)CrossRefGoogle Scholar
  2. 2.
    U. Frey et al., An 11 k-electrode 126-channel high-density micro-electrode array to interact with electrogenic cells, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 158–159, 2007Google Scholar
  3. 3.
    A.P. Georgopoulos, A.B. Schwartz, R.E. Kettner, Neuronal population coding of movement direction. Science 233(4771), 1416–1419 (1986)CrossRefGoogle Scholar
  4. 4.
    C. Chae et al., A 128-channel 6 mw wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312–321 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Yin, M. Ghovanloo, A low-noise preamplifier with adjustable gain and bandwidth for bio potential recording applications, in IEEE International Symposium on Circuits and Systems, pp. 321–324, 2007Google Scholar
  6. 6.
    J. Lin, B. Haroun, An Embedded 0.8 V/480 μW 6b/22 MHz flash ADC in 0.13 μm digital CMOS process using nonlinear double-interpolation technique, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 244–246, 2002Google Scholar
  7. 7.
    K. Uyttenhove, M. Steyaert, A 1.8–V, 6–bit, 1.3–GHz CMOS flash ADC in 0.25 µm CMOS, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 455–458, 2002Google Scholar
  8. 8.
    X. Jiang, Z. Wang, M.F. Chang, A 2 GS/s 6 b ADC in 0.18-μm CMOS, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 322–323, 2003Google Scholar
  9. 9.
    C. Sandner, M. Clara, A. Santner, T. Hartig, F. Kuttner, A 6bit, 1.2GSps low-power flash-ADC in 0.13 μm digital CMOS, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 339–342, 2004Google Scholar
  10. 10.
    C.-C. Huang, J.-T. Wu, A background comparator calibration technique for flash analog-to-digital converters. IEEE Trans. Circuits Syst I 52(9), 1732–1740 (2005)CrossRefGoogle Scholar
  11. 11.
    O. Viitala, S. Lindfors, K. Halonen, A 5-bit 1-GS/s flash-ADC in 0.13-μm CMOS using active interpolation, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 412–415, 2006Google Scholar
  12. 12.
    S. Park, Y. Palaskas, M.P. Flynn, A 4-GS/s 4-bit flash ADC in 0.18-μm CMOS. IEEE J. Solid-State Circuits 42(9), 1865–1872 (2007)CrossRefGoogle Scholar
  13. 13.
    J.-I. Kim et al., A 6-b 4.1-GS/s flash ADC with time-domain latch interpolation in 90-nm CMOS. IEEE J. Solid-State Circuits 48(6), 11429–11441 (2013)Google Scholar
  14. 14.
    A. Varzaghani et al., A 10.3-GS/s, 6-bit flash ADC for 10G ethernet applications. IEEE J. Solid-State Circuits 48(12), 3038–3048 (2013)CrossRefGoogle Scholar
  15. 15.
    J.-I. Kim et al., A 65 nm CMOS 7b 2GS/s 20.7 mW flash ADC with cascaded latch interpolation. IEEE J. Solid-State Circuits 50(10), 2319–2330 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Moreland, F. Murden, M. Elliott, J. Young, M. Hensley, R. Stop, A 14-bit 100-MSample/s subranging ADC. IEEE J. Solid-State Circuits 35(7), 1791–1798 (2000)CrossRefGoogle Scholar
  17. 17.
    P. Hui, M. Segami, M. Choi, C. Ling, A.A. Abidi, A 3.3-V 12-b 50-MS/s A/D converter in 0.6-μm CMOS with over 80-dB SFDR. IEEE J. Solid-State Circuits 35(12), 1769–1780 (2000)CrossRefGoogle Scholar
  18. 18.
    M.-J. Choe, B.-S. Song, K. Bacrania, A 13-b 40-MSamples/s CMOS pipelined folding ADC with background offset trimming. IEEE J. Solid-State Circuits 35(6), 1781–1790 (2000)CrossRefGoogle Scholar
  19. 19.
    H. van der Ploeg, G. Hoogzaad, H.A.H. Termeer, M. Vertregt, R.L.J. Roovers, A 2.5-V 12-b 54-Msample/s 0.25-μm CMOS ADC in 1-mm2 with mixed-signal chopping and calibration. IEEE J. Solid-State Circuits 36(12), 1859–1867 (2001)CrossRefGoogle Scholar
  20. 20.
    M. Clara, A. Wiesbauer, F. Kuttner, A 1.8 V fully embedded 10 b 160 MS/s two-step ADC in 0.18 μm CMOS, in Proceedings of IEEE Custom Integrated Circuit Conference, pp. 437–440, 2002Google Scholar
  21. 21.
    T.-C. Lin, J.-C. Wu, A two-step A/D converter in digital CMOS processes, in Proceedings of IEEE Asia-Pacific Conference on ASIC, pp. 177–180, 2002Google Scholar
  22. 22.
    A. Zjajo, H. van der Ploeg, M. Vertregt, A 1.8 V 100mW 12-bits 80Msample/s two-step ADC in 0.18-μm CMOS, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 241–244, 2003Google Scholar
  23. 23.
    N. Ning, F. Long, S.-Y. Wu, Y. Liu, G.-Q. Liu, Q. Yu, M.-H. Yang, An 8-Bit 250MSPS modified two-step ADC, in Proceedings of IEEE International Conference on Communications, Circuits and Systems, pp. 2197–2200, 2006Google Scholar
  24. 24.
    S. Hashemi, B. Razavi, A 7.1 mW 1 GS/s ADC with 48 dB SNDR at Nyquist rate. IEEE J. Solid-State Circuits 49(8), 1739–1750 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Wiesbauer, M. Clara, M. Harteneck, T. Potscher, C. Fleischhacker, G. Koder, C. Sandner, A fully integrated analog front-end macro for cable modem applications in 0.18-μm CMOS, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 245–248, 2001Google Scholar
  26. 26.
    R.C. Taft, M.R. Tursi, A 100-MS/s 8-b CMOS subranging ADC with sustained parametric performance from 3.8 V down to 2.2 V. IEEE J. Solid-State Circuits 36(3), 331–338 (2001)CrossRefGoogle Scholar
  27. 27.
    J. Mulder, C.M. Ward, C.-H. Lin, D. Kruse, J.R. Westra, M. Lughtart, E. Arslan, R.J. van de Plassche, K. Bult, F.M.L. van der Goes, A 21-mW 8-b 125-MSample/s ADC in 0.09-mm2 0.13-μm CMOS. IEEE J. Solid-State Circuits 39(5), 2116–2125 (2004)CrossRefGoogle Scholar
  28. 28.
    P.M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi, K. Tanabe, J. Vital, A 90 nm CMOS 1.2 V 6b 1GS/s two-step subranging ADC, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 568–569, 2006Google Scholar
  29. 29.
    Y. Shimizu, S. Murayama, K. Kudoh, H. Yatsuda, A 30mW 12b 40MS/s subranging ADC with a high-gain offset-canceling positive-feedback amplifier in 90 nm digital CMOS, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 216–217, 2006Google Scholar
  30. 30.
    J. Huber, R.J. Chandler, A.A. Abidi, A 10b 160MS/s 84mW 1 V subranging ADC in 90 nm CMOS, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 454–455, 2007Google Scholar
  31. 31.
    C. Cheng, Y. Jiren, A 10-bit 500-MS/s 124-mW subranging folding ADC in 0.13 μm CMOS in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1709–1712, 2007Google Scholar
  32. 32.
    Y. Shimizu, S. Murayama, K. Kudoh, H. Yatsuda, A split-load interpolation-amplifier-array 300MS/s 8b subranging ADC in 90 nm CMOS, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 552–553, 2008Google Scholar
  33. 33.
    K. Yoshioka et al., Dynamic architecture and frequency scaling in 0.8-1.2 GS/s 7b subranging ADC. IEEE J. Solid-State Circuits 50(4), 932–945 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    D.A. Mercer, A 14-b, 2.5 MSPS pipelined ADC with on-chip EPROM. IEEE J. Solid-State Circuits 31(1), 70–76 (1996)CrossRefGoogle Scholar
  35. 35.
    I. Opris, L. Lewicki, B. Wong, A single-ended 12-bit 20 MSample/s self-calibrating pipeline A/D converter. IEEE J. Solid-State Circuits 33(11), 1898–1903 (1998)CrossRefGoogle Scholar
  36. 36.
    A.M. Abo, P.R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits 34(5), 599–606 (1999)CrossRefGoogle Scholar
  37. 37.
    H.-S. Chen, K. Bacrania, B.-S. Song, A 14b 20MSample/s CMOS pipelined ADC, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 46–47, 2000Google Scholar
  38. 38.
    I. Mehr, L. Singer, A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC. IEEE J. Solid-State Circuits 35(3), 70–76 (2000)CrossRefGoogle Scholar
  39. 39.
    Y. Chiu, Inherently linear capacitor error-averaging techniques for pipelined A/D conversion, in IEEE Transaction on Circuits and Systems–II, vol. 47, pp. 229–232, 2000Google Scholar
  40. 40.
    X. Wang, P.J. Hurst, S.H. Lewis, A 12-bit 20-Msample/s pipelined analog-to-digital converter with nested digital background calibration. IEEE J. Solid-State Circuits 39(11), 1799–1808 (2004)CrossRefGoogle Scholar
  41. 41.
    D. Kurose, T. Ito, T. Ueno, T. Yamaji, T. Itakura, 55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 527–530, 2005Google Scholar
  42. 42.
    C.T. Peach, A. Ravi, R. Bishop, K. Soumyanath, D.J. Allstot, A 9-b 400 Msample/s pipelined analog-to-digital converter in 90 nm CMOS, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 535–538, 2005Google Scholar
  43. 43.
    A.M.A. Ali, C. Dillon, R. Sneed, A.S. Morgan, S. Bardsley, J. Kornblum, L. Wu, A 14-bit 125 MS/s IF/RF sampling pipelined ADC with 100 dB SFDR and 50 fs Jitter. IEEE J. Solid-State Circuits 41(8), 1846–1855 (2006)CrossRefGoogle Scholar
  44. 44.
    M. Daito, H. Matsui, M. Ueda, K. Iizuka, A 14-bit 20-MS/s pipelined ADC with digital distortion calibration. IEEE J. Solid-State Circuits 41(11), 2417–2423 (2006)CrossRefGoogle Scholar
  45. 45.
    T. Ito, D. Kurose, T. Ueno, T. Yamaji, T. Itakura, 55-mW 1.2-V 12-bit 100-MSPS pipeline ADCs for wireless receivers, Proceedings of IEEE European Solid-State Circuits Conference, pp. 540–543, 2006Google Scholar
  46. 46.
    J. Treichler, Q. Huang, T. Burger, A 10-bit ENOB 50-MS/s pipeline ADC in 130-nm CMOS at 1.2 V supply, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 552–555, 2006Google Scholar
  47. 47.
    I. Ahmed, D.A. Johns, An 11-bit 45MS/s pipelined ADC with rapid calibration of DAC errors in a multi-bit pipeline stage, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 147–150, 2007Google Scholar
  48. 48.
    S.-C. Lee, Y.-D. Jeon, J.-K. Kwon, J. Kim, A 10-bit 205-MS/s 1.0-mm2 90-nm CMOS pipeline ADC for flat panel display applications. IEEE J. Solid-State Circuits 42(12), 2688–2695 (2007)CrossRefGoogle Scholar
  49. 49.
    J. Li, R. Leboeuf, M. Courcy, G. Manganaro, A 1.8 V 10b 210MS/s CMOS pipelined ADC featuring 86 dB SFDR without calibration, in Proceedings of IEEE Custom Integrated Circuits Conference, pp. 317–320, 2007Google Scholar
  50. 50.
    M. Boulemnakher, E. Andre, J. Roux, F. Paillardet, A 1.2 V 4.5mW 10b 100MS/s pipeline ADC in a 65 nm CMOS, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 250–251, 2008Google Scholar
  51. 51.
    Y.-S. Shu, B.-S. Song, A 15-bit linear 20-MS/s pipelined ADC digitally calibrated with signal-dependent dithering. IEEE J. Solid-State Circuits 43(2), 342–350 (2008)CrossRefGoogle Scholar
  52. 52.
    J. Shen, P.R. Kinget, A 0.5-V 8-bit 10-Ms/s pipelined ADC in 90-nm CMOS. IEEE J. Solid-State Circuits 43(4), 1799–1808 (2008)CrossRefGoogle Scholar
  53. 53.
    C.-J. Tseng, Y.-C. Hsieh, C.-H. Yang, H.-S. Chen, A 10-bit 200 MS/s capacitor-sharing pipeline ADC. IEEE Trans. Circuits Syst.-I: Regul. Pap. 60(11), 2902–2910 (2013)CrossRefGoogle Scholar
  54. 54.
    R. Sehgal, F. van der Goes, K. Bult, A 12 b 53 mW 195 MS/s pipeline ADC with 82 dB SFDR using split-ADC calibration. IEEE J. Solid-State Circuits 50(7), 1592–1603 (2015)CrossRefGoogle Scholar
  55. 55.
    L. Yong, M.P. Flynn, A 100 MS/s 10.5 bit 2.46 mW comparator-less pipeline ADC using self-biased ring amplifiers. IEEE J. Solid-State Circuits 50(10), 2331–2341 (2015)CrossRefGoogle Scholar
  56. 56.
    S.H. Lewis, H.S. Fetterman, G.F. Gross, R. Ramachandran, T.R. Viswanathan, A 10-b 20-Msample/s analog-to-digital converter, in IEEE Journal of Solid-State Circuits, vol. 27, no. 3, pp. 351–358, 1992Google Scholar
  57. 57.
    B. Xia, A. Valdes-Garcia, E. Sanchez-Sinencio, A configurable time-interleaved pipeline ADC for multi-standard wireless receivers, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 259–262, 2004Google Scholar
  58. 58.
    S.-C. Lee, G.-H. Kim, J.-K. Kwon, J. Kim, S.-H. Lee, Offset and dynamic gain-mismatch reduction techniques for 10b 200Ms/s parallel pipeline ADCs, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 531–534, 2005Google Scholar
  59. 59.
    S. Limotyrakis, S.D. Kulchycki, D.K. Su, B.A. Wooley, A 150-MS/s 8-b 71-mW CMOS time-interleaved ADC. IEEE J. Solid-State Circuits 40(5), 1057–1067 (2005)CrossRefGoogle Scholar
  60. 60.
    C.-C. Hsu, F.-C. Huang, C.-Y. Shih, C.-C. Huang, Y.-H. Lin, C.-C. Lee, B. Razavi, An 11b 800MS/s time-interleaved ADC with digital background calibration, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 464–465, 2007Google Scholar
  61. 61.
    Z.-M. Lee, C.-Y. Wang, J.-T. Wu, A CMOS 15-bit 125-MS/s time-interleaved ADC with digital background calibration. IEEE J. Solid-State Circuits 42(10), 2149–2160 (2007)CrossRefGoogle Scholar
  62. 62.
    C.-Y. Chen et al., A 12-bit 3 GS/s pipeline ADC with 0.4 mm2 and 500 mW in 40 nm digital CMOS. IEEE J. Solid-State Circuits 47(4), 1013–1021 (2012)CrossRefGoogle Scholar
  63. 63.
    J. Park, H.-J. Park, J.-W. Kim, S. Seo, P. Chung, A 1 mW 10-bit 500 kSps SAR A/D converter, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 581–584, 2000Google Scholar
  64. 64.
    P. Confalonleri et. al., A 2.7 mW 1 MSps 10 b analog-to-digital converter with built-in reference buffer and 1 LSB accuracy programmable input ranges, in Proceedings of IEEE European Solid-State Circuits Conference, pp. 255–258, 2004Google Scholar
  65. 65.
    N. Verma, A.P. Chandrakasan, An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J. Solid-State Circuits 42(6), 1196–1205 (2007)CrossRefGoogle Scholar
  66. 66.
    C.-C. Liu et al., A 10-bit 50-MS/ SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits 45(4), 731–740 (2010)CrossRefGoogle Scholar
  67. 67.
    S. Shikata, R. Sekimoto, T. Kuroda, H. Ishikuro, A 0.5 V 1.1 MS/sec 6.3 fJ/conversion-step SAR-ADC with tri-level comparator in 40 nm CMOS. IEEE J. Solid-State Circuits 47(4), 1022–1030 (2012)CrossRefGoogle Scholar
  68. 68.
    Z. Dai, A. Bhide, A. Alvandpour, A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices. IEEE J. Solid-State Circuits 47(7), 1585–1593 (2012)CrossRefGoogle Scholar
  69. 69.
    G.-Y. Huang et al., A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications. IEEE J. Solid-State Circuits 47(11), 2783–2795 (2012)CrossRefGoogle Scholar
  70. 70.
    M. Yip, A.P. Chandrakasan, A resolution-reconfigurable 5-to-10-bit 0.4-to-1 V power scalable SAR ADC for sensor applications. IEEE J. Solid-State Circuits 48(6), 1453–1464 (2013)CrossRefGoogle Scholar
  71. 71.
    P. Harpe, E. Cantatore, A. van Roermund, A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1b ENOB at 2.2 fJ/conversion-step. IEEE J. Solid-State Circuits 48(12), 3011–3018 (2013)CrossRefGoogle Scholar
  72. 72.
    F.M. Yaul, A.P. Chandrakasan, A 10b SAR ADC with data-dependent energy reduction using LSB-first successive approximation. IEEE J. Solid-State Circuits 49(12), 2825–2834 (2014)CrossRefGoogle Scholar
  73. 73.
    J.-H. Tsai et al., A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS with digital error correction and correlated-reversed switching. IEEE J. Solid-State Circuits 50(6), 1382–1398 (2015)CrossRefGoogle Scholar
  74. 74.
    B.-S. Song, M.F. Tompsett, K.R. Lakshmikumar, A 12 bit 1 MHz capacitor error averaging pipelined A/D converter. IEEE J. Solid-State Circuits 23(10), 1324–1333 (1988)CrossRefGoogle Scholar
  75. 75.
    Y.-M. Lin, B. Kim, P.R. Gray, A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3-μm CMOS. IEEE J. Solid-State Circuits 26(5), 628–635 (1991)CrossRefGoogle Scholar
  76. 76.
    C.S.G. Conroy, D.W. Cline, P.R. Gray, A high-speed parallel pipelined ADC technique in CMOS, Proceedings of IEEE Symposium on VLSI Circuits, pp. 96–97, 1992Google Scholar
  77. 77.
    B.-S. Song, M.F. Tompsett, K.R. Lakshmikumar, A 12 bit 1 MHz capacitor error averaging pipelined A/D. IEEE J. Solid-State Circuits 23(10), 1324–1333 (1988)CrossRefGoogle Scholar
  78. 78.
    J.M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: A Design Perspective, 2nd edn. (Prentice Hall, New Jersey, 2003)Google Scholar
  79. 79.
    A.A. Abidi, High-frequency noise measurements on FETs with small dimensions. IEEE Trans. Electron Devices 33(11), 1801–1805 (1986)CrossRefGoogle Scholar
  80. 80.
    C. Enz, Y. Cheng, MOS transistor modeling for RF IC design. IEEE J. Solid-State Circuits 35(2), 186–201 (2000)CrossRefGoogle Scholar
  81. 81.
    A.M. Abo, P.R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits 34(5), 599–606 (1999)CrossRefGoogle Scholar
  82. 82.
    B.J. Hosticka, Improvement of the gain of MOS amplifiers. IEEE J. Solid-State Circuits 14(6), 1111–1114 (1979)CrossRefGoogle Scholar
  83. 83.
    E. Säckinger, W. Guggenbühl, A High-swing, high-impedance MOS cascode circuit. IEEE J. Solid-State Circuits 25(1), 289–297 (1990)CrossRefGoogle Scholar
  84. 84.
    U. Gatti, F. Maloberti, G. Torelli, A novel CMOS linear transconductance cell for continuous-time filters, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1173–1176, 1990Google Scholar
  85. 85.
    C.A. Laber, P.R. Gray, A positive-feedback transconductance amplifier with applications to high frequency high Q CMOS switched capacitor filters. IEEE J. Solid-State Circuits 13(6), 1370–1378 (1988)CrossRefGoogle Scholar
  86. 86.
    A.A. Abidi, An analysis of bootstrapped gain enhancement techniques. IEEE J. Solid-State Circuits 22(6), 1200–1204 (1987)CrossRefGoogle Scholar
  87. 87.
    B.J. Hosticka, Dynamic CMOS amplifiers. IEEE J. Solid-State Circuits 15(5), 881–886 (1980)CrossRefGoogle Scholar
  88. 88.
    K. Bult, G. Geelen, A fast-settling CMOS op amp for SC circuits with 90-dB DC gain. IEEE J. Solid-State Circuits 25(6), 1379–1384 (1990)CrossRefGoogle Scholar
  89. 89.
    R. Ockey, M. Syrzycki, Optimization of a latched comparator for high-speed analog-to-digital converters, in IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 403–408, 1999Google Scholar
  90. 90.
    F. Murden, R. Gosser, 12b 50MSample/s two-stage A/D converter, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 278–279, 1995Google Scholar
  91. 91.
    J. Robert, G.C. Temes, V. Valencic, R. Dessoulavy, D. Philippe, A 16-bit low-voltage CMOS A/D converter. IEEE J. Solid-State Circuits 22(2), 157–263 (1987)CrossRefGoogle Scholar
  92. 92.
    T.B. Cho, P.R. Gray, A 10 b, 20 Msample/s, 35 mW pipeline A/D converter. IEEE J. Solid-State Circuits 30(3), 166–172 (1995)CrossRefGoogle Scholar
  93. 93.
    L. Sumanen, M. Waltari, K. Halonen, A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters, in Proceedings of the IEEE International Conference on Circuits and Systems, pp. 32–35, 2000Google Scholar
  94. 94.
    T. Kobayashi, K. Nogami, T. Shirotori, Y. Fujimoto, A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J. Solid-State Circuits 28(4), 523–527 (1993)CrossRefGoogle Scholar
  95. 95.
    P.M. Figueiredo, J.C. Vital, Low kickback noise techniques for CMOS latched comparators, in IEEE International Symposium on Circuits and Systems, vol. 1, pp. 537–540, 2004Google Scholar
  96. 96.
    B. Nauta, A.G.W. Venes, A 70-MS/s 110-mW 8-b CMOS folding and interpolating A/D converter. IEEE J. Solid-State Circuits 30(12), 1302–1308 (1995)CrossRefGoogle Scholar
  97. 97.
    J. Lin, B. Haroun, An embedded 0.8 V/480 μW 6b/22 MHz flash ADC in 0.13 μm digital CMOS Process using nonlinear double-interpolation technique, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 244–246, 2002Google Scholar
  98. 98.
    F. Shahrokhi et al., The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)CrossRefGoogle Scholar
  99. 99.
    H. Gao et al., HermesE: a 96-channel full data rate direct neural interface in 0.13um CMOS. IEEE J. Solid-State Circuits 47(4), 1043–1055 (2012)CrossRefGoogle Scholar
  100. 100.
    D. Han et al., A 0.45 V 100-channel neural-recording IC with sub-μW/channel comsumption in 0.18 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 7(6), 735–746 (2013)CrossRefGoogle Scholar
  101. 101.
    M.S. Chae, W. Liu, M. Sivaprakasham, Design optimization for integrated neural recording systems. IEEE J. Solid-State Circuits 43(9), 1931–1939 (2008)CrossRefGoogle Scholar
  102. 102.
    T.M. Seese, H. Harasaki, G.M. Saidel, C.R. Davies, Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating. Lab. Invest. 78(12), 1553–1562 (1998)Google Scholar
  103. 103.
    A. Rodríguez-Pérez et al., A 64-channel inductively-powered neural recording sensor array, in Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 228–231, 2012Google Scholar
  104. 104.
    C. Enz, Y. Cheng, MOS transistor modeling for RF IC design. IEEE J. Solid-State Circuits 35(2), 186–201 (2000)CrossRefGoogle Scholar
  105. 105.
    S. Song et al., A 430nW 64nV/VHz current-reuse telescopic amplifier for neural recording application, in Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 322–325, 2013Google Scholar
  106. 106.
    X. Zou et al., A 100-channel 1-mW implantable neural recording IC. IEEE Trans. Circuits Syst. I Regul. Pap. 60(10), 2584–2596 (2013)CrossRefGoogle Scholar
  107. 107.
    J. Lee, H.-G. Rhew, D.R. Kipke, M.P. Flynn, A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J. Solid-State Circuits 45(9), 1935–1945 (2010)CrossRefGoogle Scholar
  108. 108.
    K. Abdelhalim, R. Genov, CMOS DAC-sharing stimulator for neural recording and stimulation arrays, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1712–1715, 2011Google Scholar
  109. 109.
    A. Rossi, G. Fucilli, Nonredundant successive approximation register for A/D converters. Electronic Lett. 32(12), 1055–1056 (1996)CrossRefGoogle Scholar
  110. 110.
    S. Narendra, V. De, S. Borkar, D.A. Antoniadis, A.P. Chandrakasan, Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18-μm CMOS. IEEE J. Solid-State Circuits 39(2), 501–510 (2004)CrossRefGoogle Scholar
  111. 111.
    B. Haaheim, T.G. Constandinou, A sub-1 μW, 16 kHz Current-mode SAR-ADC for single-neuron spike recording, in Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 2957–2960, 2012Google Scholar
  112. 112.
    A. Agarwal, Y.B. Kim, S. Sonkusale, Low power current mode ADC for CMOS sensor IC, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 584–587, 2005Google Scholar
  113. 113.
    R. Dlugosz, K. Iniewski, Ultra low power current-mode algorithmic analog-to-digital converter implemented in 0.18 μm CMOS technology for wireless sensor network, in Proceedings of IEEE International Conference on Mixed Design of Integrated Circuits and Systems, pp. 401–406, 2006Google Scholar
  114. 114.
    S. Al-Ahdab, R. Lotfi, W. Serdijn, A 1-V 225-nW 1kS/s current successive approximation ADC for pacemakers, in Proceedings of IEEE International Conference on Ph.D. Research in Microelectronics and Electronics, pp. 1–4, 2010Google Scholar
  115. 115.
    Y. Sugimoto, A 1.5-V current-mode CMOS sample-and-hold IC with 57-dB S/N at 20 MS/s and 54-dB S/N at 30 MS/s. IEEE J. Solid-State Circuits 36(4), 696–700 (2001)CrossRefGoogle Scholar
  116. 116.
    B. Linares-Barranco, T. Serrano-Gotarredona, On the design and characterization of femtoampere current-mode circuits. IEEE J. Solid-State Circuits 38(8), 1353–1363 (2003)CrossRefGoogle Scholar
  117. 117.
    E. Allier et al., 120 nm low power asynchronous ADC, in Proceedings of IEEE International Symposium on Low Power Electronic Design, pp. 60–65, 2005Google Scholar
  118. 118.
    M. Park, M.H. Perrot, A single-slope 80MS/s ADC using two-step time-to-digital conversion, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1125–1128, 2009Google Scholar
  119. 119.
    S. Naraghi, M. Courcy, M.P. Flynn, A 9-bit, 14 μW and 0.006 mm2 pulse position modulation ADC in 90 nm digital CMOS. IEEE J. Solid-State Circuits 45(9), 1870–1880 (2010)CrossRefGoogle Scholar
  120. 120.
    A.P. Chandrakasan et al., Technologies for ultradynamic voltage scaling. Proc. IEEE 98(2), 191–214 (2010)CrossRefGoogle Scholar
  121. 121.
    J.K. Fiorenza et al., Comparator-based switched-capacitor circuits for scaled CMOS technologies. IEEE J. Solid-State Circuits 41(12), 2658–2668 (2006)CrossRefGoogle Scholar
  122. 122.
    J.P. Jansson, A. Mantyniemi, J. Kostamovaara, A CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006)CrossRefGoogle Scholar
  123. 123.
    L. Brooks, H.-S. Lee, A 12b, 50 MS/s, fully differential zero-crosssing based pipelined ADC. IEEE J. Solid-State Circuits 44(12), 3329–3343 (2009)CrossRefGoogle Scholar
  124. 124.
    K. Blutman, J. Angevare, A. Zjajo, N. van der Meijs, A 0.1pJ freeze Vernier time-to-digital converter in 65 nm CMOS, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 85–88, 2014Google Scholar
  125. 125.
    R.H. Walden, Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17, 539–550 (1999)CrossRefGoogle Scholar
  126. 126.
    C.M. Lopez et al., An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid-State Circuits 49(1), 248–261 (2014)CrossRefGoogle Scholar
  127. 127.
    T. Rabuske et al., A self-calibrated 10-bit 1MSps SAR ADC with reduced-voltage charge-sharing DAC, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2452–2455, 2013Google Scholar
  128. 128.
    C. Gao et al., An ultra-low-power extended counting ADC for large scale sensor arrays, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 81–84, 2014Google Scholar
  129. 129.
    L. Zheng et al., An adaptive 16/64 kHz, 9-bit SAR ADC with peak-aligned sampling for neural spike recording, in IEEE International Symposium on Circuits and Systems, pp. 2385–2388, 2014Google Scholar
  130. 130.
    Y.-W. Cheng, K.T. Tang, A 0.5-V 1.28-MS/s 10-bit SAR ADC with switching detect logic, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 293–296, 2015Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations