Advertisement

Experimental and Numerical Validation of a Reliable Sliding Mode Control Strategy Considering Uncertainty with Interval Arithmetic

  • Luise SenkelEmail author
  • Andreas Rauh
  • Harald Aschemann
Chapter
Part of the Mathematical Engineering book series (MATHENGIN)

Abstract

Real applications are often affected by uncertainty caused by, for example, unknown parameters, sensor inaccuracies, and noise processes. These effects influence control procedures in a significant way and have to be taken into consideration in simulations and experiments to ensure stability of a real system. Often, the dynamics of a considered system can be described by nonlinear equations. To control such systems, sliding mode techniques are advantageous in compensating not explicitly modeled disturbances that influence a system. In this contribution, common sliding mode controllers are extended and combined with interval arithmetic to enhance their performance. This can be achieved by an adaptive calculation of the state-dependent gain stabilizing the variable-structure part of the system—the so-called switching amplitude. Therefore, an exact knowledge of the system parameters is not necessary because their true values are assumed to be located in specified range bounds. Moreover, stochastic uncertainty is taken into consideration representing process and measurement noise that affect practically every real system.

References

  1. 1.
    Åström KJ (1970) Introduction to stochastic control theory. Mathematics in science and engineering. Academic Press, New YorkGoogle Scholar
  2. 2.
    Auer E, Kiel S, Rauh A (2012) Verified parameter identification for solid oxide fuel cells. In: Proceedings of 5th international conference on reliable engineering computing. Brno, Czech Repulic, pp 41–55. http://rec2012.fce.vutbr.cz/documents/proceedings/REC2012_proceedings.pdf
  3. 3.
    Bartoszewicz A, Nowacka-Leverton A (2009) Time-varying sliding modes for second and third order systems, vol 382. Lecture notes in control and information sciences. Springer, BerlinGoogle Scholar
  4. 4.
    Bendsten C, Stauning O (2007) FADBAD++, Version 2.1. http://www.fadbad.com
  5. 5.
    Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, PhiladelphiaGoogle Scholar
  6. 6.
    Brandtstädter H (2008) Sliding mode control of electromechanical systems. Dissertation, Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität MünchenGoogle Scholar
  7. 7.
    Datta BN (2003) Numerical methods for linear control systems. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Heeks J (2001) Charakterisierung unsicherer Systeme mit intervallarithmetischen Methoden. Fortschritt-Berichte VDI, Reihe 8 Mess-, Steuerungs- und Regelungstechnik, Nr. 919Google Scholar
  9. 9.
    Jaulin L, Kieffer M, Didrit O, Walter É (2001) Applied interval analysis. Springer, LondonGoogle Scholar
  10. 10.
    Kiel S, Auer E, Rauh A (2013) Uses of GPU powered interval optimization for parameter identification in the context of SO fuel cells. In: Proceedings of 9th IFAC symposium on nonlinear control systems. Toulouse, FranceGoogle Scholar
  11. 11.
    Krämer W, XSC Languages (C-XSC, PASCAL-XSC) — scientific computing with validation, arithmetic requirements, hardware solution and language support, n.a. www.math.uni-wuppertal.de/~xsc/
  12. 12.
    Kushner H (1967) Stochastic stability and control. Academic Press, New YorkGoogle Scholar
  13. 13.
    Marquez HJ (2003) Nonlinear control systems, analysis and design. Wiley, HobokenGoogle Scholar
  14. 14.
    Moore RE (1966) Interval arithmetic. Prentice-Hall, Englewood CliffsGoogle Scholar
  15. 15.
    Nedialkov NS (2007) Interval tools for ODEs and DAEs. In: CD-proceedings of the 12th GAMM-IMACS international symposium on scientific computing, computer arithmetic, and validated numerics SCAN 2006. IEEE Computer Society, Duisburg, GermanyGoogle Scholar
  16. 16.
    Rauh A, Aschemann H (2012) Interval-based sliding mode control and state estimation of uncertain systems. In: Proceedings of IEEE international conference on methods and models in automation and Robotics MMAR 2012. Miedzyzdroje, PolandGoogle Scholar
  17. 17.
    Rauh A, Senkel L (2016) Interval methods for robust sliding mode control synthesis of high-temperature fuel cells with state and input constraints. In: Rauh A, Senkel L (eds) Variable-structure approaches for analysis, simulation robust control and estimation of uncertain dynamic systems, mathematical engineering. Springer, Berlin, pp 53–85. doi:  10.1007/978-3-319-31539-3_3 Google Scholar
  18. 18.
    Rauh A, Dötschel T, Aschemann H (2011) Experimental parameter identification for a control-oriented model of the thermal behavior of high-temperature fuel cells. In: CD-proceedings of IEEE international conference on methods and models in automation and robotics MMAR 2011. Miedzyzdroje, PolandGoogle Scholar
  19. 19.
    Rauh A, Senkel L, Aschemann H (2012) Sensitivity-based state and parameter estimation for fuel cell systems. In: Proceedings of 7th IFAC symposium on robust control design. Aalborg, DenmarkGoogle Scholar
  20. 20.
    Rauh A, Senkel L, Kersten J, Aschemann H (2014) Reliable control of high-temperature fuel cell systems using interval-based sliding mode techniques. IMA J Math Control Inf. http://imamci.oxfordjournals.org/content/early/2014/12/30/imamci.dnu051.abstract
  21. 21.
    Senkel L, Rauh A, Aschemann H (2013) Optimal input design for online state and parameter estimation using interval sliding mode observers. In: Proceedings of 52nd IEEE conference on decision and control, CDC 2013. Florence, ItalyGoogle Scholar
  22. 22.
    Senkel L, Rauh A, Aschemann H (2014) Sliding mode techniques for robust trajectory tracking as well as state and parameter estimation. Mathematics in computer science, pp 543–561. http://dx.doi.org/10.1007/s11786-014-0208-7
  23. 23.
    Senkel L, Rauh A, Aschemann H (2014) Robust sliding mode techniques for control and state estimation of dynamic systems with bounded and stochastic uncertainty. In: Proceedings of second international conference on vulnerability and risk analysis and management. Liverpool, UKGoogle Scholar
  24. 24.
    Senkel L, Rauh A, Aschemann H (2014) Sliding mode approaches considering uncertainty for reliable control and computation of confidence regions in state and parameter estimation. In: Proceedings of the 16th GAMM-IMACS international symposium on scientific computing, computer arithmetic, and validated numerics SCAN 2014. Würzburg, Germany. Lecture notes in computer science LNCS, vol 9553. Springer-Verlag, pp 77–96Google Scholar
  25. 25.
    Senkel L, Rauh A, Aschemann H (2014) Experimental validation of state and parameter estimation using sliding-mode-techniques with bounded and stochastic disturbances. In: ECMI 2014, proceedings of 18th European conference on mathematics for industry. Taormina, Italy (in print)Google Scholar
  26. 26.
    Shtessel Y, Edwards C, Fridman L, Levant A (eds) (2014) Sliding mode control and observation. Springer series. Birkhäuser, New YorkGoogle Scholar
  27. 27.
    Sontag ED (1998) Mathematical control theory – deterministic finite dimensional systems. Springer, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Chair of MechatronicsUniversity of RostockRostockGermany

Personalised recommendations