Skip to main content

Polymer Gels as EAPs: Models

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Abstract

Polyelectrolyte gels, often referred as ionic polymer gels are quite attractive intelligent materials. They consist of a solid phase, i.e., a polymer network with fixed charges, and a liquid phase with mobile ions. Typically these gels are immersed in a solution bath. An application of different kinds of stimuli – e.g., chemical (change of salt concentration or pH), thermal, magnetical, or electrical – leads to a new equilibrium between the different forces, such as osmotic pressure forces, electrostatic forces, and (visco-)elastic forces. This occurs in cooperation with absorption or delivery of the solvent resulting in a (local) change of volume.

In the present chapter, an overview over different modeling alternatives for chemically and electrically stimulated polyelectrolyte gels, placed in a solution bath, are given.

First, the statistical theory – a theory in which only the global swelling is of interest – is reviewed. By refining the scale, two different mesoscopic models are presented: first, the chemo-electro-mechanical transport model and second, a continuum model based on porous media. These models are capable of describing the changes of the local variables: concentrations, electric field, and displacement. So, e.g., by the application of an electric field, a bending movement of the polymer gel can be realized which is in excellent correlation with experimental investigations.

Concluding, the statistical theory is an efficient method to easily model the chemical stimulation of polyelectrolyte gels and the two continuum-based formulations are capable of simulating both chemically and electrically induced swelling or bending. So, they are an excellent technique to model hydrogel bending actuators or grippers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acartürk, AY (2009) Simulation of charged hydrated porous materials, PhD thesis, Universität Stuttgart

    Google Scholar 

  • Ballhause D, Wallmersperger T (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation. Smart Mater Struct 17(4):045011

    Article  Google Scholar 

  • Bennethum LS, Cushman JH (2002a) Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: I. Macroscale field equations. Transport Porous Media 47:309–336

    Article  Google Scholar 

  • Bennethum LS, Cushman JH (2002b) Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: II. Constitutive theory. Transport Porous Media 47:337–362

    Article  Google Scholar 

  • Bowen RM (1976) Theory of mixtures, Part I. In: Eringen AC (ed) Continuum physics III. Academic, New York

    Google Scholar 

  • Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148

    Article  Google Scholar 

  • Brock D, Lee W, Segalman D, Witkowski W (1994) A dynamic model of a linear actuator based on polymer hydrogel. J Int Mater Syst Struct 5:764–771

    Article  Google Scholar 

  • de Boer R (2000) Theory of porous media. Springer, Berlin

    Book  Google Scholar 

  • de Gennes PJ, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518

    Article  Google Scholar 

  • De SK, Aluru NR (2004) A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mech Mater 36(5–6):395–410

    Article  Google Scholar 

  • Doi M, Matsumoto M, Hirose Y (1992) Deformation of ionic polymer gels by electric fields. Macromelecules 25:5504–5511

    Article  Google Scholar 

  • Dolbow J, Fried E, Ji H (2005) A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Comput Meth Appl Mech Eng 194:4447–4480

    Article  Google Scholar 

  • Dolbow J et al (2006) Kinetics of thermally induced swelling of hydrogels. Int J Solid Struct 43(2006):1878–1907

    Google Scholar 

  • Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Blum J (eds) Porous media: theory, experiments and numerical applications. Springer, Heidelberg/Berlin

    Chapter  Google Scholar 

  • English AE, Mafé S, Manzanares JA, Yu X, Grosberg AY, Tanaka T (1996) Equilibrium swelling properties of polyampholytic hydrogels. J Chem Phys 104(21):8713–8720

    Article  Google Scholar 

  • Eringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New York

    Book  Google Scholar 

  • Ermatchkov V, Ninni L, Maurer G (2010) Thermodynamics of phase equilibrium for systems containing n-isopropyl acrylamide hydrogels. Fluid Phase Equilibria 296:140–148

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Flory PJ, Rehner J Jr (1943a) Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520

    Article  Google Scholar 

  • Flory PJ, Rehner J Jr (1943b) Statistical mechanics of cross‐linked polymer networks II. Swelling. J Chem Phys 11:521–526

    Article  Google Scholar 

  • Frijns AJH, Huyghe JM, Janssen JD (1997) A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int J Eng Sci 35(15):1419–1429

    Article  Google Scholar 

  • Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J Chem Phys 93(6):4462–4472

    Article  Google Scholar 

  • Gu WY, Lai WM, Mow VC (1999) Transport of multi-electrolytes in charged hydrated biological soft tissues. Transp Porous Media 34:143–157

    Article  Google Scholar 

  • Guenther G, Gerlach G, Wallmersperger T (2009) Non-linear effects in hydrogel-based chemical sensors: experiment and modeling. J Int Mater Syst Struct 20(8):949–961

    Article  Google Scholar 

  • Gülch RW, Holdenried J, Weible A, Wallmersperger T, Kröplin B (2000) Polyelectrolyte gels in electric fields: a theoretical and experimental approach. In: Bar-Cohen Y (ed) Proceeding of the 7th international symposium on smart structures and materials: electroactive polymer actuators and devices, vol 3987–3927. SPIE, Bellingham, Washington, pp 193–202

    Google Scholar 

  • Gurtin ME, Voorhees PW (1993) The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc R Soc A 440(1909):323–343

    Article  Google Scholar 

  • Hahn HG (1985) Elastizitätstheorie. B. G. Teubner, Stuttgart

    Book  Google Scholar 

  • Hamann CH, Vielstich W (1998) Elektrochemie, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Hamlen RP, Kent CE, Shafer SN (1965) Electrolytically activated contractile polymer. Nature 206:1149–1150

    Article  Google Scholar 

  • Hirai M, Hirai T, Sukumoda A, Nemoto H, Amemiya Y, Kobayashi K, Ueki T (1995) Electrically induced reversible structural change of a highly swollen polymer gel network. J Chem Soc Faraday Trans 91(3):473–477

    Article  Google Scholar 

  • Hong W, Liu Z, Suo Z (2009) Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int J Solid Struct 46(17):3282–3289

    Article  Google Scholar 

  • Keller K, Wallmersperger T, Kröplin B, Günther M, Gerlach G (2011) Modelling of temperature-sensitive polyelectrolyte gels by the use of the coupled chemo-electromechanical formulation. Mech Mater 18(7):511–523

    Google Scholar 

  • Lai WM, Mow VC, Sun DD, Ateshian GA (2000) On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential. J Biomech Eng 122(4):336–346

    Article  Google Scholar 

  • Lee W (1996) Polymer gel based actuator: dynamic model of gel for real time control. PhD thesis, MIT, Boston

    Google Scholar 

  • Li H, Lai F (2011) Transient analysis of the effect of the initial fixed charge density on the kinetic characteristics of the ionic-strength-sensitive hydrogel by a multi-effect-coupling model. Anal Bioanal Chem 399(3):1233–1243

    Article  Google Scholar 

  • Li H, Luo R, Lam KY (2007) Modeling of ionic transport in electric-stimulus-responsive hydrogels. J Membr Sci 289(1–2):284–296

    Article  Google Scholar 

  • Lucantonio A, Nardinocchi P, Teresi L (2013) Transient analysis of swelling-induced large deformations in polymer gels. J Mech Phys Solid 61:205–218

    Article  Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and relaxation of articular cartilage in compression: theory and experiments. ASME J Biomed Eng 102:73–84

    Article  Google Scholar 

  • Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77(11):5725–5729

    Article  Google Scholar 

  • Orlov Y, Xu X, Maurer G (2006) Equilibrium swelling of n-isopropylacrylamide based ionic hydrogels in aqueous solutions of organic solvents: comparison of experiment with theory. Fluid Phase Equilib 249(1–2):6–16

    Article  Google Scholar 

  • Orlov Y, Xu X, Maurer G (2007) An experimental and theoretical investigation on the swelling of n-isopropyl acrylamide based ionic hydrogels in aqueous solutions of (sodiumchloride or di-sodium hydrogen phosphate). Fluid Phase Equilib 254(1–2):1–10

    Article  Google Scholar 

  • Quesada-Perez M, Maroto-Centeno J, Forcada J, Hidalgo-Alvarez R (2011) Gel swelling theories: the classical formalism and recent approaches. Soft Matter 7:10536

    Article  Google Scholar 

  • Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative perfomance of the donnan theory. Macromolecules 17(12):2916–2921

    Article  Google Scholar 

  • Sadowski G (2011) Special themed issue on ‘responsive gels’. Colloid Polym Sci 289:453

    Article  Google Scholar 

  • Schröder UP (1994) Experimentelle und theoretische Untersuchungen an hochgequollenen hydrogelen. PhD thesis, Institut für Textil und Faserchemie der Universität Stuttgart

    Google Scholar 

  • Schröder UP, Oppermann W (1996) Properties of polylectrolyte gels. In: Cohen Addad JP, de Gennes P-J (eds) Physical properties of polymeric gels. Wiley, Chichester, pp 19–38

    Google Scholar 

  • Shahinpoor M (1994) Continuum electromechanics of ionic polymer gels as artificial muscles for robotic applications. Smart Mater Struct 3:367–372

    Article  Google Scholar 

  • Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320

    Article  Google Scholar 

  • Sun DN, Gu WY, Guo XE, Lai WM, Mow VC (1999) A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Num Meth Eng 45(10):1375–1402

    Article  Google Scholar 

  • Tabatabaei F, Lenz O, Holm C (2011) Simulational study of anomalous tracer diffusion in hydrogels. Colloid Polym Sci 289(5–6):523–534

    Article  Google Scholar 

  • Tamagawa H, Taya M (2000) A theoretical prediction of the ions distribution in an amphoteric polymer gel. Mater Sci Eng A 285(1–2):314–325

    Article  Google Scholar 

  • Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218

    Article  Google Scholar 

  • Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469

    Article  Google Scholar 

  • Treloar LRG (1958) The physics of rubber elasticity. Oxford University Press, Oxford

    Google Scholar 

  • Truesdell C, Noll W (2003) The non-linear field theories of mechanics. Springer, Berlin

    Google Scholar 

  • Umemoto S, Okui N, Sakai T (1991) Contraction behavior of poly(acrylonitrile) gel fibers. In: Rossi DD, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels – fundamentals and biomedical applications. Plenum Press, New York/London, pp 257–270

    Google Scholar 

  • van Loon R, Huyghe JM, Wijlaars MW, Baaijens FPT (2003) 3D FE implementation of an incompressible quadriphasic mixture model. Int J Num Meth Eng 57(9):1243–1258

    Article  Google Scholar 

  • Wallmersperger T, Ballhause D (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: II. Electrical stimulation. Smart Mater Struct 17(4):045012

    Article  Google Scholar 

  • Wallmersperger T, Kröplin B, Gülch RW (2004) Coupled chemo-electro-mechanical formulation for ionic polymer gels – numerical and experimental investigations. Mech Mater 36(5–6):411–420

    Article  Google Scholar 

  • Wallmersperger T, Wittel FK, D’Ottavio M, Kröplin B (2008) Multiscale modeling of polymer gels – chemo-electric model versus discrete element model. Mech Adv Mater Struct 15(3–4):228–234

    Article  Google Scholar 

  • Wallmersperger T, Attaran A, Keller K, Brummund J, Guenther M, Gerlach G (2013) Modeling and simulation of hydrogels for the application as bending actuators. In: Gabriele S, Walter R (eds) Progress in colloid and polymer science, vol 140. Springer, Berlin, pp 189–204

    Google Scholar 

  • Walter J, Ermatchkov V, Vrabec J, Hasse H (2010) Molecular dynamics and experimental study of conformation change of poly(n-isopropylacrylamide) hydrogels in water. Fluid Phase Equilib 296:164–172

    Article  Google Scholar 

  • Weeber R, Kantorovich S, Holm C (2012) Deformation mechanisms in 2D magnetic gels studied by computer simulations. Soft Matter 8:9923–9932

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wallmersperger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Wallmersperger, T., Leichsenring, P. (2016). Polymer Gels as EAPs: Models. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_3

Download citation

Publish with us

Policies and ethics