Regionalisation of Air-Mass and Frontal Precipitation Occurrence in Europe

  • Ewa Łupikasza
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


Spatial and seasonal variability in precipitation-prone factors in Europe leads to a variable frequency of each origin-based extreme precipitation type. This chapter synthesises the results of the occurrence of each of these. Cluster analysis of k-means method and carefully selected grouping variables were used to identify six groups of stations (regional groups) in each season characterised by different patterns of occurrence of origin-based extreme precipitation types. A clear spatial order of their occurrence suggests an existence of regularities that govern the occurrence of origin-based precipitation types in Europe. Some of the groups involve scattered stations, but such distribution, far from random, is a result of specific local influences on the processes leading to the development of extreme precipitation and on their volume. In summer, air-mass precipitation dominates three regional groups in Sothern Europe. In the southernmost of them the air-mass type accounts for nearly 70 % of extreme precipitation. Precipitation associated with the passage of different fronts represents the largest proportion of extreme precipitation in winter, when cyclone travel reaches its highest speeds.


Extreme precipitation Precipitation regions Cluster analysis precipitation types Europe 


  1. Bartholy J (1992) Meteorological choices to clustering precipitation data series and a case study for Hungary. Preprints, 12th Conference on Probability and Statistics in the Atmospheric Sciences, Toronto, ON, Canada. Bull Am Meteorol Soc J123–J124Google Scholar
  2. Bednorz E, Kolendowicz L, Bielec-Bąkowska Z, Bokwa A, Żelazny M, Kicińska B, Lewik P, Nowosad M, Ustrnul Z (2003) Regionalizacje, Typologie i wyznaczanie sezonów klimatycznych z zastosowaniem analizy skupień (Regionalization, typology and determination of climatic seasons using cluster analysis). Prze Geof 158(1–2):11–32Google Scholar
  3. Dorling SR, Davies TD, Pierce CE (1992) Cluster analysis: a technique for estimating the synoptic meteorological controls on air and precipitation chemistry: method application. Atmos Environ 26A:2575–2581CrossRefGoogle Scholar
  4. Gadgil S, Joshi NV (1983) Climatic clusters of India region. J Climatol 5:487–501Google Scholar
  5. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, BerkeleyGoogle Scholar
  6. Okołowicz W (1969) Klimatologia ogólna. PWN, Warszawa: 395Google Scholar
  7. Stanisz A (2006) Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny (Course of Statistics using medical examples). Tom 1. Statystyki podstawowe. StatSoft Polska, KrakówGoogle Scholar
  8. Stanisz A (2007) Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny Course of Statistics using medical examples). Tom 3. Analizy wielowymiarowe. StatSoft Polska, KrakówGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ewa Łupikasza
    • 1
  1. 1.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland

Personalised recommendations