Air-Mass and Frontal Extreme Precipitation

  • Ewa Łupikasza
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


The occurrence as well as the daily and annual patterns of precipitation are inseparably linked with cloud formation processes. Upward air movement, alongside its sufficient humidity, is a precondition of precipitation. This chapter uses existing studies to discuss mechanisms leading to the formation of clouds. These mechanisms are then used to identify seven origin-based extreme precipitation types, that is, air-mass precipitation and a breakdown of frontal precipitation depending on the front. The chapter discusses the spatial extent of extreme air-mass and frontal precipitation in general and then focusses on the spatial and seasonal variabilities in all the origin-based types of precipitation in Europe.

The spatial extent of frontal precipitation events (defined as the number of stations involved on a single day) is much greater than that of air-mass events. The frequency of occurrence of various origin-based types of precipitation in Europe follows discernible spatial and seasonal variabilities, which are driven by the varying pace of cyclones life and by ground relief. This latter factor also affects cyclogenesis, thus having an influence on the spatial variability of origin-based types of extreme precipitation. A clear majority of extreme precipitation in Europe is linked to weather fronts. In each season, the average proportion of frontal precipitation in the overall number of days with extreme precipitation was several times greater than that of air-mass precipitation.


Air-mass precipitation Frontal precipitation Weather fronts Cold front Warm front Occlusion 


  1. Aguado E, Burt JE (1999) Understanding weather and climate. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  2. Alonso S, Portela A, Ramis C (1994) First considerations on the structure and development of the Iberian thermal low. Ann Geophys 12:457–468CrossRefGoogle Scholar
  3. Barry RG, Carleton AM (2001) Synoptic and dynamic climatology. Routledge, LondonCrossRefGoogle Scholar
  4. Barry RG, Chorley RJ (1998) Atmosphere, weather & climate. Routledge, LondonGoogle Scholar
  5. Barry RG, Perry AH (1973) Synoptic climatology. Methods and applications. Methuen, LondonGoogle Scholar
  6. Berry G, Jacob CH, Reeder M (2011) Recent global trends in atmospheric fronts. Geophys Res Lett 38, L21812Google Scholar
  7. Blüthgen J (1966) Allegemeine klimageographie. In: Obst E (ed) Lehrbuch der allegemeine Geographie 2. de Gruyter, BerlinGoogle Scholar
  8. Chomicz K (1971) Struktura opadów atmosferycznych w Polsce (The structure of precipitation in Poland). Prace Państwowego Instytutu Hydrologiczno-Meteorologicznego 101:25–67Google Scholar
  9. Chromow SP (1977) Meteorologia i klimatologia (Meteorology and Climatology). PWN, WarszawaGoogle Scholar
  10. Djurić D (1994) Weather analysis. Prentice Hall, Englewood CliffsGoogle Scholar
  11. Doswell CA (1993) Flash-flood producing convective storms: current understanding and research. In: Report on the proceedings of the US-Spain workshop on natural hazards, Barcelona, 8–11 June 1993Google Scholar
  12. Federico S, Avolio E, Bellecci C, Lavagnini A, Colacino M, Walko RL (2008a) Numerical analysis of an intense rainstorm occurred in southern Italy. Nat Hazards Earth Syst Sci 8:19–35CrossRefGoogle Scholar
  13. Federico S, Avolio E, Pasqualoni L, Bellecci C (2008b) Atmospheric patterns for heavy rain events in Calabria. Nat Hazards Earth Syst Sci 8:1173–1186CrossRefGoogle Scholar
  14. Font Tullot I (1983) Climatologίa de España y Portugal. Instituto Nacional de Meteorologίa, ApartadoGoogle Scholar
  15. Frei CH, Davies HC, Gurtz J, Schär CH (2000) Climate dynamics and extreme precipitation and flood events in Central Europe. Integr Assess 1:281–299CrossRefGoogle Scholar
  16. Hagen M, Schiesser H-H, Dorninger M (2000) Monitoring of mesoscale precipitation systems in the Alps and the northern Alpine foreland by radar and rain gauges. Meteorol Atmos Phys 72:87–100CrossRefGoogle Scholar
  17. Hand WH, Fox NI, Collier CG (2004) A study of twentieth-century extreme rainfall events in the United Kingdom with implications for forecasting. Meteorol Appl 11:15–31CrossRefGoogle Scholar
  18. Hobbs PV (1981) Mesoscale structure in mid-latitude frontal system. In: Proceedings of the IAMAP symposium nowcasting: mesoscale observations and short-range prediction. European Space Agency Publications SP–165:29–36Google Scholar
  19. Houze RA Jr, Hobbs PV (1982) Organization and structure of precipitating cloud systems. Adv Geophys 24:225–315CrossRefGoogle Scholar
  20. Kane RJ, Chelius CR, Fritsch JM (1987) Precipitation characteristics of mesoscale convective weather systems. J Clim Appl Meteorol 26:1345–1357CrossRefGoogle Scholar
  21. Karagiannidis AF, Karacostas T, Maheras P, Makrogiannis T (2012) Climatological aspects of extreme precipitation in Europe, related to mid-latitude cyclonic systems. Theor Appl Climatol 107:165–174CrossRefGoogle Scholar
  22. Kljun N, Sprenger M, Schär C (2001) Frontal modification and lee cyclogenesis in the Alps: a case study using the ALPEX reanalysis data set. Meteorol Atmos Phys 78:89–106CrossRefGoogle Scholar
  23. Kożuchowski K (1998) Atmosfer, klimat, ekoklimat (The atmosphere, climate and eco-climate). Wydawnictwo Naukowe PWN, WarszawaGoogle Scholar
  24. Little MA, Rodda HJE, McSharry PE (2008) Bayesian objective classification of extreme UK daily rainfall for flood risk applications. Hydrol Earth Syst Sci Discuss 5:3033–3060CrossRefGoogle Scholar
  25. Llasat MC, Ramis C, Barrantes J (1996) The meteorology of high intensity rainfall events over the West Mediterranean region. Remote Sens Rev 14:51–90CrossRefGoogle Scholar
  26. Llasat MC, Rigo T, Ceperuelo M, Barrera A (2005) Estimation of convective precipitation: the meteorological radar versus an automatic rain gauge network. Adv Geosci 2:103–109CrossRefGoogle Scholar
  27. Martyn D (2000) Klimaty kuli ziemskiej. Wydawnictwo Naukowe PWN, WarszawaGoogle Scholar
  28. Mason BJ (1955) The physics of natural precipitation processes. Arch Meteorol Geophys Bioklimatol 8:159–179CrossRefGoogle Scholar
  29. Mason BJ (1957) The physics of clouds. Clarendon, Oxford, p s. 481Google Scholar
  30. Massacand AC, Wernli H, Davies HC (1998) Heavy precipitation on the Alpine southside: an upper-level precursor. Geophys Res Lett 25:1435–1438CrossRefGoogle Scholar
  31. Mätlik O, Post P (2008) Synoptic weather types that have caused heavy precipitation in Estonia in the period 1961–2005. Est J Eng 14(3):195–208CrossRefGoogle Scholar
  32. Millán MM, Estrela MJ, Miró J (2005) Rainfall components: variability and spatial distribution in a Mediterranean area (Valencia region). J Climate 18:2682–2705CrossRefGoogle Scholar
  33. Niedźwiedź T (2003) Słownik meteorologiczny (Meteorological dictionary). Polskie Towarzystwo Geofizyczne, IMGW, WarszawaGoogle Scholar
  34. Okołowicz W (1969) Klimatologia ogólna. PWN, WarszawaGoogle Scholar
  35. Pradier S, Chong M, Roux F (2004) Characteristics of some frontal stratiform precipitation events south of the alpine chain during MAP. Meteorol Atmos Phys 87:197–218CrossRefGoogle Scholar
  36. Raddatz RL, Hanesiak JM (2008) Significant summer rainfall in the Canadian Prairie Provinces: modes and mechanisms 2000–2004. Int J Climatol 28:1607–1613CrossRefGoogle Scholar
  37. Ramis C (1995) Las observaciones de la atmósferalibre en Mallorca: una breve historia y algunos resultados. Revista de Ciència 17:41–58Google Scholar
  38. Riosalido R (1990) Characterization of mesoscale convective systems by satellite pictures during PREVIMET MEDITERRANEO – 89’, Segundo Simposio Nacional de Predicción, Instituto Nacional de Meteorologίa, Apartado 285, 28071, MadridGoogle Scholar
  39. Romeo R, Guijarro JA, Ramis C, Alonso S (1998) A 30-year (1964–1993) daily rainfall data base for the Spanish Mediterranean regions: first exploratory study. Int J Climatol 18:541–560CrossRefGoogle Scholar
  40. Rumney GR (1968) Climatology and the world’s climates. Macmillan, New YorkGoogle Scholar
  41. Schneider SH (1996) Encyclopedia of climate and weather, 2-vols. Oxford University Press, New York, p 875Google Scholar
  42. Steinacker R (1981) Analysis of the temperature and wind field in the Alpine region. Geophys Astrophys Fluid Dyn 17:51–62CrossRefGoogle Scholar
  43. Strangeways I (2007) Precipitation. Theory, measurements and distribution. Cambridge University Press, New YorkGoogle Scholar
  44. Trewartha GT (1968) An introduction to climate. McGraw-Hill, New YorkGoogle Scholar
  45. Wheeler DA (1988) The Barcelona storm: 1–5th October, 1987. J Meteorol 13:78–85Google Scholar
  46. Wheeler DA (1991) Majorca’s severe storms of September 1989: a reminder of Mediterranean uncertainty. Weather 46:21–26CrossRefGoogle Scholar
  47. Wheeler DA (1995) Heavy rain in Catalonia, October 1994. Weather 50:362–367CrossRefGoogle Scholar
  48. Wilby RL (1998) Modelling low-frequency rainfall events using airflow indices, weather patterns and frontal frequencies. J Hydrol 212-213:380–392CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ewa Łupikasza
    • 1
  1. 1.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland

Personalised recommendations