Skip to main content

Combining Mutation and Recombination to Improve a Distributed Model of Adaptive Operator Selection

  • Conference paper
  • First Online:
Artificial Evolution (EA 2015)

Abstract

We present evidence indicating that adding a crossover island greatly improves the performance of a Dynamic Island Model for Adaptive Operator Selection. Two combinatorial optimisation problems are considered: the Onemax benchmark, to prove the concept; and a real-world formulation of the course timetabling problem to test practical relevance. Crossover is added to the recently proposed dynamic island adaptive model for operator selection which considered mutation only. When comparing the models with and without a recombination, we found that having a crossover island significantly improves the performance. Our experiments also provide compelling evidence of the dynamic role of crossover during search: it is a useful operator across the whole search process. The idea of combining different type of operators in a distributed adaptive search model is worth further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.cs.qub.ac.uk/itc2007/.

References

  1. Araujo, L., Guervós, J.J.M., Mora, A., Cotta, C.: Genotypic differences and migration policies in an island model. In: GECCO, pp. 1331–1338 (2009)

    Google Scholar 

  2. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. (JORS) 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  3. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: A dynamic island model for adaptive operator selection. In: Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 1253–1260 (2012)

    Google Scholar 

  4. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 913–920. ACM (2008)

    Google Scholar 

  5. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive operator selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Gustafson, S., Burke, E.K.: The speciating island model: an alternative parallel evolutionary algorithm. J. Parallel Distrib. Comput. 66(8), 1025–1036 (2006)

    Article  MATH  Google Scholar 

  7. Lardeux, F., Goëffon, A.: A dynamic island-based genetic algorithms framework. In: Deb, K., Bhattacharya, A., Chakraborti, N., Chakroborty, P., Das, S., Dutta, J., Gupta, S.K., Jain, A., Aggarwal, V., Branke, J., Louis, S.J., Tan, K.C. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 156–165. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Lässig, J., Sudholt, D.: Design and analysis of migration in parallel evolutionary algorithms. Soft Comput. 17(7), 1121–1144 (2013)

    Article  MATH  Google Scholar 

  9. Luque, G., Alba, E.: Selection pressure and takeover time of distributed evolutionary algorithms. In: Pelikan, M., Branke, J. (eds.) Genetic and Evolutionary Computation Conference, GECCO 2010, pp. 1083–1088. ACM (2010)

    Google Scholar 

  10. Maturana, J., Saubion, F.: On the design of adaptive control strategies for evolutionary algorithms. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 303–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero, L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: the second international timetabling competition. INFORMS J. Comput. 22(1), 120–130 (2010)

    Article  MATH  Google Scholar 

  12. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau, M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Ochoa, G., Harvey, I., Buxton, H.: On recombination and optimal mutation rates. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 488–495. Morgan Kaufmann (1999)

    Google Scholar 

  14. Rucinski, M., Izzo, D., Biscani, F.: On the impact of the migration topology on the island model. CoRR abs/1004.4541 (2010)

    Google Scholar 

  15. Skolicki, Z., Jong, K.D.: The influence of migration sizes and intervals on island models. In: GECCO, pp. 1295–1302 (2005)

    Google Scholar 

  16. Soria-Alcaraz, J., Martin, C., Héctor, P., Hugo, T.M., Laura, C.R.: Methodology of design: a novel generic approach applied to the course timetabling problem. In: Melin, P., Castillo, O. (eds.) Soft Computing Applications in Optimization, Control, and Recognition. Studies in Fuzziness and Soft Computing, vol. 294, pp. 287–319. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Soria-Alcaraz, J.A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.K.: Effective learning hyper-heuristics for the course timetabling problem. Eur. J. Oper. Res. 238(1), 77–86 (2014)

    Article  MathSciNet  Google Scholar 

  18. Whitley, D., Rana, S., Heckendorn, R.: The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–47 (1998)

    Google Scholar 

Download references

Acknowledgments

J. A. Soria-Alcaraz would like to thank the Consejo Nacional de Ciencia y tecnologia (CONACyT, México). G. Ochoa would like to thank the University of Angers for hosting and funding a research visit in 2014 that started this collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Soria-Alcaraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Soria-Alcaraz, J.A., Ochoa, G., Göeffon, A., Lardeux, F., Saubion, F. (2016). Combining Mutation and Recombination to Improve a Distributed Model of Adaptive Operator Selection. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2015. Lecture Notes in Computer Science(), vol 9554. Springer, Cham. https://doi.org/10.1007/978-3-319-31471-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31471-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31470-9

  • Online ISBN: 978-3-319-31471-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics