Skip to main content

A Survival Kit in Phase Plane Analysis: Some Basic Models and Problems

  • Chapter
  • First Online:
Nonlinear Water Waves

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2158))

Abstract

The aim of this note is to show how phase plane analysis is a strong tool for the study of a mathematical model, in view of its application in water waves theory. This because only in recent work such method was actually used in water waves theory and people working in this field area might be interested in a discussion of the basic ideas of phase plane analysis, which we call “a survival kit”. In this light, at first we review some classical results in Dynamics of Population and Epidemiology, and then we investigate more carefully the phase portrait of the classical Liénard equation. In particular, starting from the Van Der Pol equation, the problem of existence and uniqueness of limit cycles will be treated and the methods used to attack this problem will be presented. Finally we come back to water waves theory and present in details the results of a joint paper with Constantin (Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, Wiley, New York, 1977) in which, as far as we know, for the first time phase plane analysis was used in this kind of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyce, W.E., DiPrima, R.C.: Elementary Differential Equations and Boundary Value Problems, 3rd edn. Wiley, New York (1977)

    MATH  Google Scholar 

  2. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constantin, A.: The flow beneath a periodic travelling surface water wave. J. Phys. A: Math. Theor. 48 (2015). Art. No. 143001

    Google Scholar 

  4. Constantin, A., Strauss, W.: Pressure beneath a Stokes wave. Commun. Pure Appl. Math. 63, 533–557 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Constantin, A., Villari, G.: Particle trajectories in linear water waves. J. Math. Fluid Mech. 10, 1–18 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, A., Ehrnström, M., Villari, G.: Particle trajectories in linear deep-water waves. Nonlinear Anal. Real World Appl. 9, 1336–1344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Darwin, C.: On the Origin of Species by Means of Natural Selection. John Murray, London (1859)

    Google Scholar 

  8. Dragilev, A.V.: Periodic solution of a differential equation of nonlinear oscillation. Prikladnaya Mat. I. Mek. 16, 85–88 (1952; Russian)

    Google Scholar 

  9. Ehrnström, M., Villari, G.: Linear water waves with vorticity: rotational features and particle paths. J. Differ. Equ. 244, 1888–1909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ehrnström, M., Escher, J., Villari, G.: Steady water waves with multiple critical layers: interior dynamics. J. Math. Fluid Mech. 14, 407–419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Filippov, A.F.: A sufficient condition for the existence of a stable limit cycle for a second order equation (Russian). Mat. Sb. 30, 171–180 (1952)

    Google Scholar 

  12. Gause, G.F.: Verifications sperimentales de la theorie mathematique de la lutte pour la vie. Actualites scientifiques et industrielles, vol. 277. Hermann et C. editeurs, Paris (1935)

    Google Scholar 

  13. Gerstner, F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  14. Henry, D.: The trajectories of particles in deep-water Stokes waves. Int. Math. Res. Not., 13 pp. (2006). Art. ID 23405

    Google Scholar 

  15. Henry, D.: Particle trajectories in linear periodic capillary and capillary-gravity water waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365, 2241–2251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henry, D.: Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves. J. Nonlinear Math. Phys. 14, 1–7 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iannelli, M.: The mathematical description of epidemics: some basic models and problems. In: Da Prato, G. (ed.) Mathematical Aspects of Human Diseases, pp. 15–25. Giardini, Pisa (1992)

    Google Scholar 

  18. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  19. Lefschetz, S.: Differential Equations: Geometric Theory. Interscience, New York (1957)

    MATH  Google Scholar 

  20. Levinson, N., Smith, O.K.: A general equation for relaxation oscillations. Duke Math. J. 9, 382–403 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liénard, A.: Étude des oscillations entretenues. Revue génér. de l’électr. 23, 901–902, 906–954 (1928)

    Google Scholar 

  22. Longuet-Higgins, M.S.: The trajectories of particles in steep, symmetric gravity waves. J. Fluid Mech. 94, 497–517 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Massera, J.L.: Sur un Théoreme de G. Sansone sur l’equation de Liénard. Boll. Unione Mat. Ital. 9 (3), 367–369 (1954)

    MathSciNet  MATH  Google Scholar 

  24. Matioc, A.-V.: On particle trajectories in linear deep-water waves. Commun. Pure Appl. Anal. 11, 1537–1547 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nachbin, A., Ribeiro-Junior, R.: A boundary integral formulation for particle trajectories in Stokes waves. Discret. Cont. Dyn. Syst. A 34, 3135–3153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Okamoto, H., Shoji, M.: Trajectories of fluid particles in a periodic water wave. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370, 1661–1676 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rosati, L., Villari, G.: On Massera’s Theorem concerning the uniqueness of a periodic solution for the Liénard equation. When does such a periodic solution actually exists? Bound. Value Probl. 2013, 144 (2013)

    Google Scholar 

  28. Sabatini, M., Villari, G.: On the uniqueness of limit cycles for Liénard equation: the legacy of G. Sansone. Le Matematiche LXV, 201–214 (2010)

    Google Scholar 

  29. Sansone, G.: Soluzioni periodiche dell’equazione di Liénard. Calcolo del periodo. Rend. Sem. Mat. Univ. e politecnico Torino 10, 155–171 (1951)

    MathSciNet  MATH  Google Scholar 

  30. Stokes, G.G.: On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441–455 (1847)

    Google Scholar 

  31. Umeyama, M.: Eulerian Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370, 1687–1702 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Van Der Pol, B.: On “relaxation oscillations” I. Lond. Edinb. Dublin Philos. Mag. (7) 2, 978–992 (1926)

    Google Scholar 

  33. Verhulst, P.F.: Notice sur la loi que la population poursuitvdans son accroissement. Correspondance Mathématique et Physiquev 10, 113–121 (1838)

    Google Scholar 

  34. Villari, G.: Periodic solutions of Liénard’s equation. J. Math. Anal. Appl. 86, 379–386 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Villari, G.: On the existence of periodic solutions for Liénard’s equation. Nonlinear Anal. TMA 7, 71–78 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Villari, G.: On the qualitative behaviour of solutions of Liénard equation. J. Differ. Equ. 67, 269–277 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Villari, G.: An improvement of Massera’s theorem for the existence and uniqueness of a periodic solution for the Liénard equation. Rend. Istit. Mat. Univ. Trieste 44, 187–195 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Villari, G., Zanolin, F.: On a dynamical system in the Liénard Plane. Necessary and sufficient conditions for the intersection with the vertical isocline and applications. Funkcial. Ekvac. 33, 19–38 (1990)

    MathSciNet  MATH  Google Scholar 

  39. Volterra, V.: Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Memorie del Regio Comitato Talassografico Italiano, Mem. CXXXI, 1–142 (1927)

    Google Scholar 

Download references

Acknowledgements

I thank Dr. Francesco Mugelli for his friendly help in the writing of this note.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Villari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villari, G. (2016). A Survival Kit in Phase Plane Analysis: Some Basic Models and Problems. In: Constantin, A. (eds) Nonlinear Water Waves. Lecture Notes in Mathematics(), vol 2158. Springer, Cham. https://doi.org/10.1007/978-3-319-31462-4_4

Download citation

Publish with us

Policies and ethics