Skip to main content

Excitons

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 239))

Abstract

The 2D nature of mono- and few-layer TMDCs plays a very important role in exciton behaviour. The extraordinary large exciton binding energy in 2D TMDCs forms a platform for both fundamental studies and novel applications. Various aspects of 2D excitons in TMDCs are described in this Chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that the authors of the original paper use notations that are different from the AB, and C excitons used in other publications

References

  1. R.S. Knox, Theory of Excitons, vol. 5 (Academic Press, New York, 1963)

    Google Scholar 

  2. M. Dvorak, S.H. Wei, Z. Wu, Origin of the variation of exciton binding energy in semiconductors. Phys. Rev. Lett. 110(1), 016402 (2013)

    Article  Google Scholar 

  3. A. Thilagam, Exciton complexes in low dimensional transition metal dichalcogenides. J. Appl. Phys. 116(5), 053523 (2014)

    Article  Google Scholar 

  4. Y. You, X.X. Zhang, T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, T.F. Heinz, Observation of biexcitons in monolayer WSe\(_2\). Nat. Phys. 11, 477 (2015)

    Article  Google Scholar 

  5. A. Ramirez-Torres, V. Turkowski, T.S. Rahman, Time-dependent density-matrix functional theory for trion excitations: application to monolayer MoS\(_2\) and other transition-metal dichalcogenides. Phys. Rev. B 90(8), 085419 (2014)

    Article  Google Scholar 

  6. X.F. He, Excitons in anisotropic solids: the model of fractional-dimensional space. Phys. Rev. B 43(3), 2063 (1991)

    Article  Google Scholar 

  7. A. Mitioglu, P. Plochocka, Á. Granados del Aguila, P. Christianen, G. Deligeorgis, S. Anghel, L. Kulyuk, D. Maude, Optical investigation of monolayer and bulk tungsten diselenide (WSe\(_2\)) in high magnetic fields. Nano Lett. 15(7), 4387 (2015)

    Article  Google Scholar 

  8. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, T.F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS\(_2\). Phys. Rev. Lett. 113(7), 076802 (2014)

    Article  Google Scholar 

  9. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88(4), 045318 (2013)

    Article  Google Scholar 

  10. J. Feng, X. Qian, C.W. Huang, J. Li, Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6(12), 866 (2012)

    Article  Google Scholar 

  11. D.Y. Qiu, F.H. da Jornada, S.G. Louie, Optical spectrum of MoS\(_2\): many-body effects and diversity of exciton states. Phys. Rev. Lett. 111(21), 216805 (2013)

    Article  Google Scholar 

  12. T. Cheiwchanchamnangij, W.R. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS\(_2\). Phys. Rev. B 85(20), 205302 (2012)

    Article  Google Scholar 

  13. A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, L. Wirtz, Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS\(_2\). Phys. Rev. B 88(4), 045412 (2013)

    Article  Google Scholar 

  14. G.D. Scholes, G. Rumbles, Excitons in nanoscale systems. Nat. Mater. 5(9), 683 (2006)

    Article  Google Scholar 

  15. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS\(_2\): a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  Google Scholar 

  16. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS\(_2\). Nano Lett. 10(4), 1271 (2010)

    Article  Google Scholar 

  17. M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34(8), 5390 (1986)

    Article  Google Scholar 

  18. A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86(11), 115409 (2012)

    Article  Google Scholar 

  19. M. Rohlfing, S.G. Louie, Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62(8), 4927 (2000)

    Article  Google Scholar 

  20. G. Berghäuser, E. Malic, Analytical approach to excitonic properties of MoS\(_2\). Phys. Rev. B 89(12), 125309 (2014)

    Article  Google Scholar 

  21. F. Wu, F. Qu, A. MacDonald, Exciton band structure of monolayer MoS\(_2\). Phys. Rev. B 91, 075310 (2015)

    Article  Google Scholar 

  22. A. Molina-Sanchez, L. Wirtz, Phonons in single-layer and few-layer MoS\(_2\) and WS\(_2\). Phys. Rev. B 84(15), 155413 (2011)

    Article  Google Scholar 

  23. K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. Shan, Tightly bound excitons in monolayer WSe\(_2\). Phys. Rev. Lett. 113(2), 026803 (2014)

    Article  Google Scholar 

  24. P. Cudazzo, I.V. Tokatly, A. Rubio, Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphane. Phys. Rev. B 84(8), 085406 (2011)

    Article  Google Scholar 

  25. B. Evans, P. Young, Exciton spectra in thin crystals: the diamagnetic effect. Proc. Phys. Soc. 91(2), 475 (1967)

    Article  Google Scholar 

  26. A. Beal, J. Knights, W. Liang, Transmission spectra of some transition metal dichalcogenides. II. Group-VIA: trigonal prismatic coordination. J Phys. C 5(24), 3540 (1972)

    Article  Google Scholar 

  27. Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S.G. Louie, X. Zhang, Probing excitonic dark states in single-layer tungsten disulphide. Nature 513(7517), 214 (2014)

    Article  Google Scholar 

  28. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, The optical resonances in carbon nanotubes arise from excitons. Science 308(5723), 838 (2005)

    Article  Google Scholar 

  29. J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. Strano, C. Thomsen, C. Lienau, Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72(24), 241402 (2005)

    Article  Google Scholar 

  30. B. Zhu, X. Chen, X. Cui, Exciton binding energy of monolayer WS\(_2\). Sci. Rep. 5 (2014). doi:10.1038/srep09218

  31. A. Hanbicki, M. Currie, G. Kioseoglou, A. Friedman, B. Jonker, Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS\(_2\) and WSe\(_2\). Solid State Commun. 203, 16 (2015)

    Article  Google Scholar 

  32. Y. Song, H. Dery, Transport theory of monolayer transition-metal dichalcogenides through symmetry. Phys. Rev. Lett. 111(2), 026601 (2013)

    Article  Google Scholar 

  33. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition metal dichalcogenides. Phys. Rev. B 92, 085413 (2015)

    Article  Google Scholar 

  34. H.M. Hill, A.F. Rigosi, C. Roquelet, A. Chernikov, T.C. Berkelbach, D.R. Reichman, M.S. Hybertsen, L.E. Brus, T.F. Heinz, Observation of excitonic Rydberg states in monolayer MoS\(_2\) and WS\(_2\) by photoluminescence excitation spectroscopy. Nano Lett. 15(5), 2992 (2015)

    Article  Google Scholar 

  35. A. Arora, K. Nogajewski, M. Molas, M. Koperski, M. Potemski, Exciton band structure in layered MoSe\(_2\): from a monolayer to the bulk limit. Nanoscale 7(48), 20769 (2015)

    Article  Google Scholar 

  36. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, M. Potemski, Excitonic resonances in thin films of WSe\(_2\): from monolayer to bulk material. Nanoscale 7, 10421 (2015)

    Article  Google Scholar 

  37. X.X. Zhang, Y. You, S.Y.F. Zhao, T.F. Heinz, Experimental evidence for dark excitons in monolayer WSe\(_2\). Phys. Rev. Lett. 115(25), 257403 (2015)

    Article  Google Scholar 

  38. G.B. Liu, W.Y. Shan, Y. Yao, W. Yao, D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88(8), 085433 (2013)

    Article  Google Scholar 

  39. K. Kośmider, J. Fernández-Rossier, Electronic properties of the MoS\(_2\)-WS\(_2\) heterojunction. Phys. Rev. B 87(7), 075451 (2013)

    Article  Google Scholar 

  40. A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N.D. Drummond, V. Fal’ko, kp theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2(2), 022001 (2015)

    Google Scholar 

  41. G. Wang, C. Robert, A. Suslu, B. Chen, S. Yang, S. Alamdari, I.C. Gerber, T. Amand, X. Marie, S. Tongay, et al., Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat. Commun. 6 (2015). doi:10.1038/ncomms10110

  42. A. Rodin, A.C. Neto, Excitonic collapse in semiconducting transition-metal dichalcogenides. Phys. Rev. B 88(19), 195437 (2013)

    Article  Google Scholar 

  43. T. Stroucken, S.W. Koch, Optically bright p-excitons indicating strong Coulomb coupling in transition-metal dichalchogenides. J. Phys, Cond. Matter 27, 345003 (2015)

    Google Scholar 

  44. Y. Lin, X. Ling, L. Yu, S. Huang, A.L. Hsu, Y.H. Lee, J. Kong, M.S. Dresselhaus, T. Palacios, Dielectric screening of excitons and trions in single-layer MoS\(_2\). Nano Lett. 14(10), 5569 (2014)

    Article  Google Scholar 

  45. F.J. Crowne, M. Amani, A.G. Birdwell, M.L. Chin, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, Blueshift of the A-exciton peak in folded monolayer 1h-MoS\(_2\). Phys. Rev. B 88(23), 235302 (2013)

    Article  Google Scholar 

  46. F. Prins, A.J. Goodman, W.A. Tisdale, Reduced dielectric screening and enhanced energy transfer in single-and few-layer MoS\(_2\). Nano Lett. 14(11), 6087 (2014)

    Article  Google Scholar 

  47. C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, R. Huber, Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe\(_2\). Nat. Mater. 14(9), 889 (2015)

    Article  Google Scholar 

  48. G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, B. Urbaszek, Giant enhancement of the optical second-harmonic emission of WSe\(_2\) monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114(9), 097403 (2015)

    Article  Google Scholar 

  49. X. Marie, B. Urbaszek, 2D materials: ultrafast exciton dynamics. Nat. Mater. 14(9), 860 (2015)

    Article  Google Scholar 

  50. S. Sim, J. Park, J.G. Song, C. In, Y.S. Lee, H. Kim, H. Choi, Exciton dynamics in atomically thin MoS\(_2\): interexcitonic interaction and broadening kinetics. Phys. Rev. B 88(7), 075434 (2013)

    Article  Google Scholar 

  51. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, Low-temperature photocarrier dynamics in monolayer MoS\(_2\). Appl. Phys. Lett. 99(10), 102109 (2011)

    Article  Google Scholar 

  52. H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L. Huang, Exciton dynamics in suspended monolayer and few-layer MoS\(_2\) 2D crystals. ACS Nano 7(2), 1072 (2013)

    Article  Google Scholar 

  53. N. Kumar, J. He, D. He, Y. Wang, H. Zhao, Charge carrier dynamics in bulk MoS\(_2\) crystal studied by transient absorption microscopy. J. Appl. Phys. 113(13), 133702 (2013)

    Article  Google Scholar 

  54. R. Wang, B.A. Ruzicka, N. Kumar, M.Z. Bellus, H.Y. Chiu, H. Zhao, Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 86(4), 045406 (2012)

    Article  Google Scholar 

  55. D. Lagarde, L. Bouet, X. Marie, C. Zhu, B. Liu, T. Amand, P. Tan, B. Urbaszek, Carrier and polarization dynamics in monolayer MoS\(_2\). Phys. Rev. Lett. 112(4), 047401 (2014)

    Article  Google Scholar 

  56. O. Salehzadeh, N.H. Tran, X. Liu, I. Shih, Z. Mi, Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS\(_2\) light-emitting devices. Nano Lett. 14(7), 4125 (2014)

    Article  Google Scholar 

  57. H. Wang, C. Zhang, F. Rana, Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS\(_2\). Nano Lett. 15(1), 339 (2015)

    Article  Google Scholar 

  58. G. Wang, X. Marie, L. Bouet, M. Vidal, A. Balocchi, T. Amand, D. Lagarde, B. Urbaszek, Exciton dynamics in WSe\(_2\) bilayers. Appl. Phys. Lett. 105(18), 182105 (2014)

    Article  Google Scholar 

  59. T. Yan, X. Qiao, X. Liu, P. Tan, X. Zhang, Photoluminescence properties and exciton dynamics in monolayer WSe\(_2\). Appl. Phys. Lett. 105(10), 101901 (2014)

    Article  Google Scholar 

  60. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, H. Zhao, Exciton diffusion in monolayer and bulk MoSe\(_2\). Nanoscale 6(9), 4915 (2014)

    Article  Google Scholar 

  61. M. Palummo, M. Bernardi, J.C. Grossman, Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794 (2015)

    Article  Google Scholar 

  62. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, H. Zhao, Exciton-exciton annihilation in MoSe\(_2\) monolayers. Phys. Rev. B 89(12), 125427 (2014)

    Article  Google Scholar 

  63. D. Sun, Y. Rao, G.A. Reider, G. Chen, Y. You, L. Brézin, A.R. Harutyunyan, T.F. Heinz, Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14(10), 5625 (2014)

    Article  Google Scholar 

  64. S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, Nonlinear photoluminescence in atomically thin layered WSe\(_2\) arising from diffusion-assisted exciton-exciton annihilation. Phys. Rev. B 90(15), 155449 (2014)

    Article  Google Scholar 

  65. M.J. Shin, D.H. Kim, D. Lim, Photoluminescence saturation and exciton decay dynamics in transition metal dichalcogenide monolayers. J. Korean Phys. Soc 65(12), 2077 (2014)

    Article  Google Scholar 

  66. A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N.J. Ghimire, J. Yan, B.L. Ivanov, et al., Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4 (2014). doi:10.1038/srep06608

  67. Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S.L. Zhang, R. Liu, Z.J. Qiu, Photothermoelectric and photovoltaic effects both present in MoS\(_2\). Sci. Rep. 5 (2015). doi:10.1038/srep07938

  68. L. Yuan, L. Huang, Exciton dynamics and annihilation in WS\(_2\) 2D semiconductors. Nanoscale 7(16), 7402 (2015)

    Article  Google Scholar 

  69. C.F. Klingshirn, Semiconductor Optics, vol. 3 (Springer Science and Business Media, 2007)

    Google Scholar 

  70. E.J. Sie, Y.H. Lee, A.J. Frenzel, J. Kong, N. Gedik, Biexciton formation in monolayer MoS\(_2\) observed by transient absorption spectroscopy. arXiv preprint arXiv:1312.2918 (2013)

  71. J. Mertens, Y. Shi, A. Molina-Sánchez, L. Wirtz, H.Y. Yang, J.J. Baumberg, Excitons in a mirror: formation of optical bilayers using MoS\(_2\) monolayers on gold substrates. Appl. Phys. Lett. 104(19), 191105 (2014)

    Article  Google Scholar 

  72. R. Chance, A. Prock, R. Silbey, Frequency shifts of an electric-dipole transition near a partially reflecting surface. Phys. Rev. A 12(4), 1448 (1975)

    Article  Google Scholar 

  73. K. Kheng, R. Cox, M.Y. d’Aubigné, F. Bassani, K. Saminadayar, S. Tatarenko, Observation of negatively charged excitons X\(^{-}\) in semiconductor quantum wells. Phys. Rev. Lett. 71(11), 1752 (1993)

    Article  Google Scholar 

  74. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Tightly bound trions in monolayer MoS\(_2\). Nat. Mater. 12(3), 207 (2013)

    Article  Google Scholar 

  75. J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, et al., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4 (2013). doi:10.1038/ncomms2498

  76. V. Huard, R. Cox, K. Saminadayar, A. Arnoult, S. Tatarenko, Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron gas. Phys. Rev. Lett. 84(1), 187 (2000)

    Article  Google Scholar 

  77. R. Soklaski, Y. Liang, L. Yang, Temperature effect on optical spectra of monolayer molybdenum disulfide. Appl. Phys. Lett. 104(19), 193110 (2014)

    Article  Google Scholar 

  78. L.Y. Gan, Q. Zhang, Y.J. Zhao, Y. Cheng, U. Schwingenschlögl, Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo\(_{1-\text{x}}\)W\(_{\text{ x }}\)X\(_2\) (X= S, Se, and Te). Sci. Rep. 4 (2014). doi:10.1038/srep06691

  79. J. Yang, T. Lü, Y.W. Myint, J. Pei, D. Macdonald, J.C. Zheng, Y. Lu, Robust excitons and trions in monolayer MoTe\(_2\). ACS Nano 9(6), 6603 (2015)

    Article  Google Scholar 

  80. J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, T. Yu, Observation of excitonic fine structure in a 2D transition metal dichalcogenide semiconductor. ACS Nano (2015)

    Google Scholar 

  81. A.M. Jones, H. Yu, J.S. Ross, P. Klement, N.J. Ghimire, J. Yan, D.G. Mandrus, W. Yao, X. Xu, Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe\(_2\). Nat. Phys. 10(2), 130 (2014)

    Article  Google Scholar 

  82. A.M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian, J.S. Ross, B. Zhao, J. Yan, D.G. Mandrus, D. Xiao et al., Optical generation of excitonic valley coherence in monolayer WSe\(_2\). Nat. Nanotech. 8(9), 634 (2013)

    Article  Google Scholar 

  83. A. Mitioglu, P. Plochocka, J. Jadczak, W. Escoffier, G. Rikken, L. Kulyuk, D. Maude, Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 88(24), 245403 (2013)

    Article  Google Scholar 

  84. C. Lui, A. Frenzel, D. Pilon, Y.H. Lee, X. Ling, G. Akselrod, J. Kong, N. Gedik, Trion-induced negative photoconductivity in monolayer MoS\(_2\). Phys. Rev. Lett. 113(16), 166801 (2014)

    Article  Google Scholar 

  85. A. Singh, G. Moody, S. Wu, Y. Wu, N.J. Ghimire, J. Yan, D.G. Mandrus, X. Xu, X. Li, Coherent electronic coupling in atomically thin MoSe\(_2\). Phys. Rev. Lett. 112(21), 216804 (2014)

    Article  Google Scholar 

  86. A. Steinhoff, M. Rösner, F. Jahnke, T.O. Wehling, C. Gies, Influence of excited carriers on the optical and electronic properties of MoS\(_2\). Nano Lett. 14(7), 3743 (2014)

    Article  Google Scholar 

  87. S. Konabe, S. Okada, Effect of Coulomb interactions on optical properties of monolayer transition-metal dichalcogenides. Phys. Rev. B 90(15), 155304 (2014)

    Article  Google Scholar 

  88. H. Yu, G.B. Liu, P. Gong, X. Xu, W. Yao, Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5 (2014). doi:10.1038/ncomms4876

  89. M.M. Ugeda, A.J. Bradley, S.F. Shi, H. Felipe, Y. Zhang, D.Y. Qiu, W. Ruan, S.K. Mo, Z. Hussain, Z.X. Shen et al., Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13(12), 1091 (2014)

    Article  Google Scholar 

  90. L.H. Tizei, Y.C. Lin, M. Mukai, H. Sawada, A.Y. Lu, L.J. Li, K. Kimoto, K. Suenaga, Exciton mapping at subwavelength scales in two-dimensional materials. Phys. Rev. Lett. 114(10), 107601 (2015)

    Article  Google Scholar 

  91. J. Wilson, A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193 (1969)

    Article  Google Scholar 

  92. P. Rivera, J.R. Schaibley, A.M. Jones, J.S. Ross, S. Wu, G. Aivazian, P. Klement, N.J. Ghimire, J. Yan, D. Mandrus et al., Observation of long-lived interlayer excitons in monolayer MoSe\(_2\)-WSe\(_2\) heterostructures. Nat. Commun. 6, 6242 (2015). doi:10.1038/ncomms7242

    Article  Google Scholar 

  93. F. Ceballos, M.Z. Bellus, H.Y. Chiu, H. Zhao, Ultrafast charge separation and indirect exciton formation in a MoS\(_2\)-MoSe\(_2\) van der Waals heterostructure. ACS Nano 8(12), 12717 (2014)

    Article  Google Scholar 

  94. Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A.A. Purezky, D.B. Geohegan, K.W. Kim, Y. Zhang et al., Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and non-epitaxial MoS\(_2\)/WS\(_2\) heterostructures. Nano Lett. 15(1), 486 (2015)

    Article  Google Scholar 

  95. A.F. Rigosi, H.M. Hill, Y. Li, A. Chernikov, T.F. Heinz, Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS\(_2\)/WS\(_2\) and MoSe\(_2\)/WSe\(_2\). Nano Lett. 15(8), 5033 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Kolobov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolobov, A.V., Tominaga, J. (2016). Excitons. In: Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-31450-1_9

Download citation

Publish with us

Policies and ethics