Skip to main content

Extending the Gillespie’s Stochastic Simulation Algorithm for Integrating Discrete-Event and Multi-Agent Based Simulation

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9568)

Abstract

Whereas Multi-Agent Based Simulation (MABS) is emerging as a reference approach for complex system simulation, the event-driven approach of Discrete-Event Simulation (DES) is the most used approach in the simulation mainstream. In this paper we elaborate on two intuitions: (i) event-based systems and multi-agent systems are amenable of a coherent interpretation within a unique conceptual framework; (ii) integrating MABS and DES can lead to a more expressive and powerful simulation framework. Accordingly, we propose a computational model integrating DES and MABS based on an extension of the Gillespie’s stochastic simulation algorithm. Then we discuss a case of a simulation platform (ALCHEMIST) specifically targeted at such a kind of complex models, and show an example of urban crowd steering simulation.

Keywords

  • Multi-agent based simulation
  • Discrete-event simulation
  • Stochastic simulation
  • Gillespie algorithm
  • ALCHEMIST

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-31447-1_1
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-31447-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    http://ccl.northwestern.edu/netlogo/.

  2. 2.

    http://www.anylogic.com.

  3. 3.

    http://jade.tilab.com.

  4. 4.

    http://tucson.unibo.it.

  5. 5.

    http://alchemist.apice.unibo.it.

References

  1. Aiello, F., Bellifemine, F.L., Fortino, G., Galzarano, S., Gravina, R.: An agent-based signal processing in-node environment for real-time human activity monitoring based on wireless body sensor networks. Eng. Appl. Artif. Intell. 24(7), 1147–1161 (2011)

    CrossRef  Google Scholar 

  2. Allan, R.: Survey of agent based modelling and simulation tools. Technical report DL-TR-2010-007, Computational Science and Engineering Department (2010)

    Google Scholar 

  3. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)

    CrossRef  Google Scholar 

  4. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. 99(s. 3), 7280–7287 (2002)

    CrossRef  Google Scholar 

  5. Burrage, K., Burrage, P.M., Leier, A., Marquez-Lago, T., Nicolau Jr., D.V.: Stochastic simulation for spatial modelling of dynamic processes in a living cell. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds.) Engineering Approaches to Systems and Synthetic Biology, pp. 43–62. Springer, New York (2011)

    Google Scholar 

  6. Ciocchetta, F., Guerriero, M.L.: Modelling biological compartments in Bio-PEPA. ENTCS 227, 77–95 (2009)

    MATH  Google Scholar 

  7. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Nat. Comput. 12(1), 43–67 (2013)

    CrossRef  MathSciNet  Google Scholar 

  8. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven lightweight DSC-based agents for MAS modelling. Int. J. Agent-Oriented Softw. Eng. 4(2), 113–140 (2010)

    CrossRef  Google Scholar 

  9. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

    CrossRef  Google Scholar 

  10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    CrossRef  Google Scholar 

  11. González Pérez, P.P., Omicini, A., Sbaraglia, M.: A biochemically-inspired coordination-based model for simulating intracellular signalling pathways. J. Simul. 7(3), 216–226 (2013)

    CrossRef  Google Scholar 

  12. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: Copasi - a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)

    CrossRef  Google Scholar 

  13. Kierzek, A.M.: STOCKS: STOChastic kinetic simulations of biochemical systems with Gillespie algorithm. Bioinformatics 18(3), 470–481 (2002)

    CrossRef  Google Scholar 

  14. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.C.: Mason: a multiagent simulation environment. Simulation 81(7), 517–527 (2005)

    CrossRef  Google Scholar 

  15. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J. Simul. 4, 151–162 (2010)

    CrossRef  Google Scholar 

  16. Meyer, R.: Event-driven multi-agent simulation. In: Grimaldo, F., Norling, E. (eds.) MABS 2014. LNCS, vol. 9002, pp. 3–16. Springer, Heidelberg (2015)

    Google Scholar 

  17. Michel, F., Ferber, J., Drogoul, A.: Multi-agent systems and simulation: a survey from the agents community’s perspective. In: Multi-Agent Systems: Simulation and Applications. CRC Press (2009)

    Google Scholar 

  18. Minar, N., Burkhart, R., Langton, C.: The Swarm simulation system: a toolkit for building multi-agent simulations. Technical report 96–06-042, Santa Fe Institute (1996)

    Google Scholar 

  19. Molesini, A., Casadei, M., Omicini, A., Viroli, M.: Simulation in agent-oriented software engineering: the SODA case study. Sci. Comput. Program. 78(6), 705–714 (2013)

    CrossRef  Google Scholar 

  20. Montagna, S., Pianini, D., Viroli, M.: Gradient-based self-organisation patterns of anticipative adaptation. In: 6th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2012). pp. 169–174 (2012)

    Google Scholar 

  21. Montagna, S., Pianini, D., Viroli, M.: A model for Drosophila Melanogaster development from a single cell to stripe pattern formation. In: 27th Annual ACM Symposium on Applied Computing (SAC 2012). pp. 1406–1412. ACM (2012)

    Google Scholar 

  22. Montagna, S., Viroli, M.: A framework for modelling and simulating networks of cells. ENTCS 268, 115–129 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Zambonelli, F.: Injecting self-organisation into pervasive service ecosystems. Mob. Netw. Appl. 18(3), 398–412 (2013)

    CrossRef  Google Scholar 

  24. North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with Repast Simphony. Complex Adapt. Syst. Model. 1(1), 3 (2013)

    CrossRef  Google Scholar 

  25. Omicini, A.: Event-based vs. multi-agent systems: towards a unified conceptual framework. In: 2015 19th IEEE International Conference on Computer Supported Cooperative Work in Design (CSCWD 2015). IEEE Computer Society (May 2015)

    Google Scholar 

  26. Omicini, A., Fortino, G., Mariani, S.: Blending event-based and multi-agent systems around coordination abstractions. In: Holvoet, T., Viroli, M. (eds.) Coordination Models and Languages. LNCS, vol. 9037, pp. 186–193. Springer, Heidelberg (2015)

    Google Scholar 

  27. Omicini, A., Ricci, A., Viroli, M.: Coordination artifacts as first-class abstractions for MAS engineering: state of the research. In: Garcia, A., Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) Software Engineering for Multi-Agent Systems IV: Research Issues and Practical Applications. LNCS, vol. 3914, pp. 71–90. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  28. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts: environment-based coordination for intelligent agents. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004). LNCS, vol. 1, pp. 286–293. ACM, New York, USA (2004)

    Google Scholar 

  29. Omicini, A., Zambonelli, F.: Coordination for internet application development. Auton. Agents Multi-Agent Syst. 2(3), 251–269 (1999)

    CrossRef  Google Scholar 

  30. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computational systems with Alchemist. J. Simul. 7(3), 202–215 (2013)

    CrossRef  Google Scholar 

  31. Pianini, D., Viroli, M., Zambonelli, F., Ferscha, A.: HPC from a self-organisation perspective: the case of crowd steering at the urban scale. In: High Performance Computing Simulation (HPCS 2014). pp. 460–467 (2014)

    Google Scholar 

  32. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80, 25–31 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  33. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: review and development recommendations. Simulation 82(9), 609–623 (2006)

    CrossRef  Google Scholar 

  34. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI architecture. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR’91), pp. 473–484. Morgan Kaufmann Publishers, San Mateo, CA (1991)

    Google Scholar 

  35. Shimoni, Y., Nudelman, G., Hayot, F., Sealfon, S.C.: Multi-scale stochastic simulation of diffusion-coupled agents and its application to cell culture simulation. PLoS ONE 6(12), e29298 (2011)

    CrossRef  Google Scholar 

  36. Slepoy, A., Thompson, A.P., Plimpton, S.J.: A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128(20), 205101 (2008)

    CrossRef  Google Scholar 

  37. Versari, C., Busi, N.: Efficient stochastic simulation of biological systems with multiple variable volumes. ENTCS 194(3), 165–180 (2008)

    MATH  Google Scholar 

  38. Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in multi-agent systems. Auton. Agents Multi-Agent Syst. 14(1), 5–30 (2007)

    CrossRef  Google Scholar 

  39. White, T., Pagurek, B.: Towards multi-swarm problem solving in networks. In: Proceedings of International Conference on Multi Agent Systems 1998, 333–340 (1998)

    Google Scholar 

  40. Zabet, N.R., Adryan, B.: GRiP: a computational tool to simulate transcription factor binding in prokaryotes. Bioinformatics 28(9), 1287–1289 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Montagna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Montagna, S., Omicini, A., Pianini, D. (2016). Extending the Gillespie’s Stochastic Simulation Algorithm for Integrating Discrete-Event and Multi-Agent Based Simulation. In: Gaudou, B., Sichman, J. (eds) Multi-Agent Based Simulation XVI. MABS 2015. Lecture Notes in Computer Science(), vol 9568. Springer, Cham. https://doi.org/10.1007/978-3-319-31447-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31447-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31446-4

  • Online ISBN: 978-3-319-31447-1

  • eBook Packages: Computer ScienceComputer Science (R0)