Skip to main content

Exploring Agent Architectures for Farmer Behavior in Land-Use Change. A Case Study in Coastal Area of the Vietnamese Mekong Delta

  • Conference paper
  • First Online:
Multi-Agent Based Simulation XVI (MABS 2015)


Farmers are the key actors of land-use change processes. It is thus essential to choose a suitable architecture for farmer behavior to model such processes. In this paper, we compared three models with different architectures to model the farmer behavior in the coastal areas of the Ben Tre province: (i) The first one is a probabilistic model that allows farmer to select the land-use pattern based on land change probability; (ii) The second model is based on multi-criteria decision making and takes into account the land suitability of the parcel and the farmer benefit; (iii) The third model used a BDI (Beliefs - Desires - Intentions) architecture. For each of these models, we have compared the difference between simulated data and real data by using the Fuzzy Kappa coefficient. The results show the suitability of the BDI architecture to build land-use change model and to support decision-making on land-use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.


  1. Adam, C., Gaudou, B., Hickmott, S., Scerri, D.: Agents BDI et simulations sociales. unis pour le meilleur et pour le pire. In: RIA, pp. 11–43 (2011)

    Google Scholar 

  2. Balke, T., Gilbert, N.: How do agents make decisions? a survey. J. Artif. Soc. Soc. Simul. 17(4), 3 (2014)

    Google Scholar 

  3. Behzadi, S., Alesheikh, A.A.: Introducing a novel model of belief–desire–intention agent for urban land use planning. Eng. Appl. Artif. Intell. 26(9), 2028–2044 (2013)

    Article  Google Scholar 

  4. Castella, J.C., Trung, T.N., Boissau, S.: Participatory simulation of land-use changes in the northern mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecology Soc. 10(1), 27 (2005)

    Google Scholar 

  5. Dolan, P., Hallsworth, M., Halpern, D., King, D., Metcalfe, R., Vlaev, I.: Influencing behaviour: the mindspace way. J. Econ. Psychol. 33(1), 264–277 (2003)

    Article  Google Scholar 

  6. Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.: GAMA 1.6: advancing the art of complex agent-based modeling and simulation. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 117–131. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Jepsen, M.R., Leisz, S., Rasmussen, K., Jakobsen, J., Muller-Jensen, L., Christiansen, L.: Agent-based modelling of shifting cultivation field patterns, Vietnam. Int. J. Geog. Inform. Sci. 20(9), 1067–1085 (2006)

    Article  Google Scholar 

  8. Mialhe, F., Becu, N., Gunnell, Y.: An agent-based model for analyzing landuse dynamics in response to farmer behaviour and environmental change in the Pampanga Delta, Philippines. Agric. Ecosyst. Environ. 161, 55–69 (2012)

    Article  Google Scholar 

  9. Minh, V.Q., Van, N.T.B.: Simulation of inland water inundation depth under changing of elevation using statistics and spatial interpolation techniques. J. Sci. Cantho Univ. 17a, 110–117 (2011)

    Google Scholar 

  10. MONRE: Circular no. 19/2009/TT-BTNMT: Detailing the establishment, regulation and evaluation planning, land-use planning, Ministry of Natural Resources and Environment of Vietnam (2009)

    Google Scholar 

  11. Moreno, N., Wang, F., Marceau, D.J.: Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model. Comput. Environ. Urban Syst. 33(1), 44–54 (2009)

    Article  Google Scholar 

  12. Nhan, D.K., Trung, N.H., Sanh, N.V.: The impact of weather variability on rice and aquaculture production in the mekong delta. In: Stewart, M.A., Coclanis, P.A. (eds.) Environmental Change and Agricultural Sustainability in the Mekong Delta. AGCR, vol. 45, pp. 437–451. Springer, Netherlands (2011)

    Google Scholar 

  13. Nilsson, N.J.: A production system for automatic deduction. Technical report, Stanford University (2015)

    Google Scholar 

  14. Parker, D.C., Manson, S.M., Janssen, M.A., Hoffman, M.J., Deadman, P.: Multi-agent systems for the simulation of land-use and land- cover change: a review. Ann. Assoc. Am. Geogr. 93(2), 316–340 (2003)

    Article  Google Scholar 

  15. PCBT: Report of land-use zoning in 2020 and the land-use plan for 5 early years 2011–2015 of Ben Tre province, People’s Committee of Ben Tre province (2011)

    Google Scholar 

  16. Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning, pp. 473–484 (1991)

    Google Scholar 

  17. Taillandier, P., Therond, O.: Use of the belief theory to formalize agent decision making processes: application to cropping plan decision making. In: European Simulation and Modelling Conference, pp. 138–142 (2011)

    Google Scholar 

  18. Taillandier, P., Therond, O., Gaudou, B.: A new BDI agent architecture based on the belief theory. application to the modelling of cropping plan decision-making. In: International Environmental Modelling and Software Society (iEMSs) (2012)

    Google Scholar 

  19. Tri, L.Q., Guong, V.T., Vu, P.T., Binh, N.T.S., Kiet, N.H., Chien, V.V.: Evaluating the changes of soil properties and landuse at three coastal districts in Soc Trang province. J. Sci. Cantho Univ. 9, 59–68 (2008)

    Google Scholar 

  20. Tri, V.P.D., Trung, N.H., Thanh, V.Q.: Vulnerability to flood in the Vietnamese Mekong Delta: mapping and uncertainty assessment. J. Environ. Sci. Eng. B 2, 229–237 (2013)

    Google Scholar 

  21. Visser, H., de Nijs, T.: The map comparison kit. Environ. Model. Softw. 21(3), 346–358 (2006)

    Article  Google Scholar 

  22. VNA: Article 24, Land on Law 2003, Vietnamese National Assembly (2003)

    Google Scholar 

  23. Wassmann, R., Hien, N.X., Hoanh, C.T., Tuong, T.P.: Sea level rise affecting the Vietnamese Mekong Delta: water elevation in the flood season and implications for rice production. Climatic Change 66(1–2), 89–107 (2004)

    Article  Google Scholar 

  24. Yang, X., Zheng, X.Q., Chen, R.: A land use change model: integrating landscape pattern indexes and Markov-CA. Ecol. Model. 283, 1–7 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Quang Chi Truong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Truong, Q.C., Taillandier, P., Gaudou, B., Vo, M.Q., Nguyen, T.H., Drogoul, A. (2016). Exploring Agent Architectures for Farmer Behavior in Land-Use Change. A Case Study in Coastal Area of the Vietnamese Mekong Delta. In: Gaudou, B., Sichman, J. (eds) Multi-Agent Based Simulation XVI. MABS 2015. Lecture Notes in Computer Science(), vol 9568. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31446-4

  • Online ISBN: 978-3-319-31447-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics