Skip to main content

Stem Cells, Bioengineering, and 3-D Scaffolds for Nervous System Repair and Regeneration

  • Chapter
  • First Online:
Neural Engineering

Abstract

Abstract:A fundamental issue in biology concerns how cells establish and maintain their identity during early embryogenesis. Gaining a better understanding of these rules is key to future development of experimental therapeutics and is an important foundation of tissue engineering and regenerative medicine. With the successful isolation of embryonic stem cells and the emergence of induced pluripotent stem cell technologies, it has become achievable to recapitulate developmental processes of early development. Furthermore, the advent of cellular reprogramming and transdifferentiation technologies has made it possible to implement rational strategies to generate specific cell types in order to model neurodegenerative diseases and develop cell-based therapies for nervous system disorders. Moreover, with advances in biomaterials and in 3-D scaffold fabrication techniques, it is becoming possible to mimic the neural stem cell niche. In this chapter, we provide an overview of approaches merging stem cells, polymeric scaffolds, drug delivery systems, gene therapy, cellular engineering, and biomaterials to develop experimental strategies for neural tissue engineering. Combined, these enabling technologies are likely to be beneficial for development of therapeutic interventions for translation to the clinic. A summary of a number of current clinical trials is also presented at the end to illustrate how combination of these technologies is helping nervous system rescue and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, S., N. Eroshenko, and R.R. Rao. 2009. Role of Bioinspired Polymers in Determination of Pluripotent Stem Cell Fate. Regenerative Medicine 4(4): 561–578.

    Article  Google Scholar 

  • Alyautdin, R., et al. 1997. Delivery of Loperamide Across the Blood–Brain Barrier with Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles. Pharmaceutical Research 14(3): 325–328.

    Article  Google Scholar 

  • Alyautdin, R.N., et al. 1998. Significant Entry of Tubocurarine into the Brain of Rats by Adsorption to Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles: An In Situ Brain Perfusion Study. Journal of Microencapsulation 15(1): 67–74.

    Article  Google Scholar 

  • Amoh, Y., et al. 2009. Human Hair Follicle Pluripotent Stem (hfPS) Cells Promote Regeneration of Peripheral-Nerve Injury: An Advantageous Alternative to ES and iPS Cells. Journal of Cellular Biochemistry 107(5): 1016–1020.

    Article  Google Scholar 

  • Andrieu-Soler, C., et al. 2005. Intravitreous Injection of PLGA Microspheres Encapsulating GDNF Promotes the Survival of Photoreceptors in the rd1/rd1 Mouse. Molecular Vision 11: 1002–1011.

    Google Scholar 

  • Aqil, A., et al. 2008. Magnetic Nanoparticles Coated by Temperature Responsive Copolymers for Hyperthermia. Journal of Materials Chemistry 18(28): 3352–3360.

    Article  Google Scholar 

  • Arthur, A., et al. 2008. Adult Human Dental Pulp Stem Cells Differentiate Toward Functionally Active Neurons Under Appropriate Environmental Cues. Stem Cells 26(7): 1787–1795.

    Article  Google Scholar 

  • Auffan, M., et al. 2009. Towards a Definition of Inorganic Nanoparticles from an Environmental, Health and Safety Perspective. Nature Nanotechnology 4(10): 634–641.

    Article  Google Scholar 

  • Bain, G., et al. 1995. Embryonic Stem Cells Express Neuronal Properties In Vitro. Developmental Biology 168(2): 342–357.

    Article  Google Scholar 

  • Bakandritsos, A., et al. 2010. Preparation, Stability and Cytocompatibility of Magnetic/PLA-PEG Hybrids. Nanoscale 2(4): 564–572.

    Article  Google Scholar 

  • Behrstock, S., et al. 2006. Human Neural Progenitors Deliver Glial Cell Line-Derived Neurotrophic Factor to Parkinsonian Rodents and Aged Primates. Gene Therapy 13(5): 379–388.

    Article  Google Scholar 

  • Bible, E., et al. 2012. Neo-vascularization of the Stroke Cavity by Implantation of Human Neural Stem Cells on VEGF-Releasing PLGA Microparticles. Biomaterials 33(30): 7435–7446.

    Article  Google Scholar 

  • Bissonnette, C.J., et al. 2011. The Controlled Generation of Functional Basal Forebrain Cholinergic Neurons from Human Embryonic Stem Cells. Stem Cells 29(5): 802–811.

    Article  Google Scholar 

  • Bjorklund, L.M., et al. 2002. Embryonic Stem Cells Develop into Functional Dopaminergic Neurons After Transplantation in a Parkinson Rat Model. Proceedings of the National Academy of Sciences of the United States of America 99(4): 2344–2349.

    Article  Google Scholar 

  • Blanchard, J.W., et al. 2015. Selective Conversion of Fibroblasts into Peripheral Sensory Neurons. Nature Neuroscience 18(1): 25–35.

    Article  Google Scholar 

  • Bosi, S., et al. 2013. Carbon Nanotubes: A Promise for Nerve Tissue Engineering? Nanotechnology Reviews 2(1): 47–57.

    Article  Google Scholar 

  • Bosi, S., L. Ballerini, and M. Prato. 2014. Carbon Nanotubes in Tissue Engineering. In Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes, eds. M. Marcaccio and F. Paolucci, 181–204.

    Google Scholar 

  • Bottai, D., et al. 2010. Embryonic Stem Cells Promote Motor Recovery and Affect Inflammatory Cell Infiltration in Spinal Cord Injured Mice. Experimental Neurology 223(2): 452–463.

    Article  MathSciNet  Google Scholar 

  • Brederlau, A., et al. 2006. Transplantation of Human Embryonic Stem Cell-Derived Cells to a Rat Model of Parkinson’s Disease: Effect of In Vitro Differentiation on Graft Survival and Teratoma Formation. Stem Cells 24(6): 1433–1440.

    Article  Google Scholar 

  • Brem, H., et al. 1989. Biocompatibility of a Biodegradable, Controlled-Release Polymer in the Rabbit Brain. Selective Cancer Therapeutics 5(2): 55–65.

    Article  Google Scholar 

  • Brustle, O., et al. 1999. Embryonic Stem Cell-Derived Glial Precursors: A Source of Myelinating Transplants. Science 285: 754–756.

    Article  Google Scholar 

  • Brustle, I., et al. 2015. Hematopoietic and Mesenchymal Stem Cells: Polymeric Nanoparticle Uptake and Lineage Differentiation. Beilstein Journal of Nanotechnology 6: 383–395.

    Article  Google Scholar 

  • Budhian, A., S.J. Siegel, and K.I. Winey. 2008. Controlling the In Vitro Release Profiles for a System of Haloperidol-Loaded PLGA Nanoparticles. International Journal of Pharmaceutics 346(1–2): 151–159.

    Article  Google Scholar 

  • Burdick, J.A., et al. 2006. Stimulation of Neurite Outgrowth by Neurotrophins Delivered from Degradable Hydrogels. Biomaterials 27(3): 452–459.

    Article  Google Scholar 

  • Burkersroda, F.V., L. Schedl, and A. Göpferich. 2002. Why Degradable Polymers Undergo Surface Erosion or Bulk Erosion. Biomaterials 23(21): 4221–4231.

    Article  Google Scholar 

  • Caiazzo, M., et al. 2011. Direct Generation of Functional Dopaminergic Neurons from Mouse and Human Fibroblasts. Nature 476(7359): 224–227.

    Article  Google Scholar 

  • Caicco, M.J., et al. 2013. A Hydrogel Composite System for Sustained Epi-Cortical Delivery of Cyclosporin A to the Brain for Treatment of Stroke. Journal of Controlled Release 166(3): 197–202.

    Article  Google Scholar 

  • Calatayud, M.P., et al. 2013. Neuronal Cells Loaded with PEI-Coated Fe3O4 Nanoparticles for Magnetically Guided Nerve Regeneration. Journal of Materials Chemistry B 1(29): 3607–3616.

    Article  Google Scholar 

  • Cao, L., et al. 2004. Olfactory Ensheathing Cells Genetically Modified to Secrete GDNF to Promote Spinal Cord Repair. Brain 127(Pt 3): 535–549.

    Google Scholar 

  • Castillo, B., et al. 1994. Retinal Ganglion-Cell Survival Is Promoted by Genetically-Modified Astrocytes Designed to Secrete Brain-Derived Neurotrophic Factor (BDNF). Brain Research 647(1): 30–36.

    Article  Google Scholar 

  • Ceballos, D., et al. 1999. Magnetically Aligned Collagen Gel Filling a Collagen Nerve Guide Improves Peripheral Nerve Regeneration. Experimental Neurology 158(2): 290–300.

    Article  Google Scholar 

  • Chai, C., and K.W. Leong. 2007. Biomaterials Approach to Expand and Direct Differentiation of Stem Cells. Molecular Therapy 15(3): 467–480.

    Article  Google Scholar 

  • Chambers, I., and A. Smith. 2004. Self-Renewal of Teratocarcinoma and Embryonic Stem Cells. Oncogene 23(43): 7150–7160.

    Article  Google Scholar 

  • Chambers, I., et al. 2003. Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell 113: 643–655.

    Article  Google Scholar 

  • Chambers, S.M., et al. 2009. Highly Efficient Neural Conversion of Human ES and iPS Cells by Dual Inhibition of SMAD Signaling. Nature Biotechnology 27(3): 275–280.

    Article  Google Scholar 

  • Chavez-Santoscoy, A.V., et al. 2012. Tailoring the Immune Response by Targeting C-Type Lectin Receptors on Alveolar Macrophages Using “Pathogen-Like” Amphiphilic Polyanhydride Nanoparticles. Biomaterials 33(18): 4762–4772.

    Article  Google Scholar 

  • Chen, B., et al. 2013. Pushing the Science Forward: Chitosan Nanoparticles and Functional Repair of CNS Tissue After Spinal Cord Injury. Journal of Biological Engineering 7(1): 1–9.

    Article  Google Scholar 

  • Chew, S.Y., et al. 2005. Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules 6(4): 2017–2024.

    Article  Google Scholar 

  • Chew, S.Y., et al. 2008. The Effect of the Alignment of Electrospun Fibrous Scaffolds on Schwann Cell Maturation. Biomaterials 29(6): 653–661.

    Article  MathSciNet  Google Scholar 

  • Chew, E.Y., et al. 2015. Ciliary Neurotrophic Factor for Macular Telangiectasia Type 2: Results From a Phase 1 Safety Trial. American Journal of Ophthalmology 159(4): 659–666. e1.

    Article  Google Scholar 

  • Chin, M.H., et al. 2009. Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures. Cell Stem Cell 5(1): 111–123.

    Article  Google Scholar 

  • Cho, Y., and R. Ben Borgens. 2012. Polymer and Nano-Technology Applications for Repair and Reconstruction of the Central Nervous System. Experimental Neurology 233(1): 126–144.

    Article  Google Scholar 

  • Cho, Y., et al. 2009. A Mesoporous Silica Nanosphere-Based Drug Delivery System Using an Electrically Conducting Polymer. Nanotechnology 20(27): 275102.

    Article  Google Scholar 

  • Cho, M.S., et al. 2012. Functional Outcome Following Nerve Repair in the Upper Extremity Using Processed Nerve Allograft. Journal of Hand Surgery. American Volume 37(11): 2340–2349.

    Article  Google Scholar 

  • Choi, B.H., et al. 2005. Nerve Repair Using a Vein Graft Filled with Collagen Gel. Journal of Reconstructive Microsurgery 21(4): 267–272.

    Article  Google Scholar 

  • Choi, H.S., et al. 2015. Therapeutic Potentials of Human Adipose-Derived Stem Cells on the Mouse Model of Parkinson’s Disease. Neurobiol Aging 36(10): 2885–2892.

    Article  Google Scholar 

  • Ciofani, G., et al. 2009. Magnetic Alginate Microspheres: System for the Position Controlled Delivery of Nerve Growth Factor. Biomedical Microdevices 11(2): 517–527.

    Article  Google Scholar 

  • Cole, R.J., R.G. Edwards, and J. Paul. 1966. Cytodifferentiation and Embryogenesis in Cell Colonies and Tissue Cultures Derived from Ova and Blastocysts of the Rabbit. Developmental Biology 13: 385–407.

    Article  Google Scholar 

  • Corey, J.M., et al. 2007. Aligned Electrospun Nanofibers Specify the Direction of Dorsal Root Ganglia Neurite Growth. Journal of Biomedical Materials Research. Part A 83(3): 636–645.

    Article  MathSciNet  Google Scholar 

  • Crompton, K.E., et al. 2007. Polylysine-Functionalised Thermoresponsive Chitosan Hydrogel for Neural Tissue Engineering. Biomaterials 28(3): 441–449.

    Article  Google Scholar 

  • Cunha, C., S. Panseri, and S. Antonini. 2011. Emerging Nanotechnology Approaches in Tissue Engineering for Peripheral Nerve Regeneration. Nanomedicine: Nanotechnology Biology and Medicine 7(1): 50–59.

    Google Scholar 

  • Cunningham, M., et al. 2014. hPSC-Derived Maturing GABAergic Interneurons Ameliorate Seizures and Abnormal Behavior in Epileptic Mice. Cell Stem Cell 15(5): 559–573.

    Article  Google Scholar 

  • Daadi, M.M., A.L. Maag, and G.K. Steinberg. 2008. Adherent Self-Renewable Human Embryonic Stem Cell-Derived Neural Stem Cell Line: Functional Engraftment in Experimental Stroke Model. PLoS One 3(2): e1644.

    Article  Google Scholar 

  • Dahan, M., et al. 2003. Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking. Science 302(5644): 442–445.

    Article  Google Scholar 

  • Dang, J.M., and K.W. Leong. 2006. Natural Polymers for Gene Delivery and Tissue Engineering. Advanced Drug Delivery Reviews 58(4): 487–499.

    Article  Google Scholar 

  • de Boer, R., et al. 2012. Short- and Long-Term Peripheral Nerve Regeneration Using a Poly-Lactic-Co-Glycolic-Acid Scaffold Containing Nerve Growth Factor and Glial Cell Line-Derived Neurotrophic Factor Releasing Microspheres. Journal of Biomedical Materials Research. Part A 100A(8): 2139–2146.

    Article  Google Scholar 

  • De Jong, W.H., and P.J.A. Borm. 2008. Drug Delivery and Nanoparticles: Applications and Hazards. International Journal of Nanomedicine 3(2): 133–149.

    Article  Google Scholar 

  • de Vos, P., et al. 2014. Polymers in Cell Encapsulation from an Enveloped Cell Perspective. Advanced Drug Delivery Reviews 67–68: 15–34.

    Article  Google Scholar 

  • Delcroix, G.J.R., et al. 2011. The Therapeutic Potential of Human Multipotent Mesenchymal Stromal Cells Combined with Pharmacologically Active Microcarriers Transplanted in Hemi-Parkinsonian Rats. Biomaterials 32(6): 1560–1573.

    Article  Google Scholar 

  • Deshpande, D.M., et al. 2006. Recovery from Paralysis in Adult Rats Using Embryonic Stem Cells. Annals of Neurology 60(1): 32–44.

    Article  Google Scholar 

  • Dey, N.D., et al. 2010. Genetically Engineered Mesenchymal Stem Cells Reduce Behavioral Deficits in the YAC 128 Mouse Model of Huntington’s Disease. Behavioural Brain Research 214(2): 193–200.

    Article  Google Scholar 

  • Dhandayuthapani, B., et al. 2011. Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science 2011: 1–19.

    Article  Google Scholar 

  • Dihne, M., et al. 2006. Embryonic Stem Cell-Derived Neuronally Committed Precursor Cells with Reduced Teratoma Formation After Transplantation into the Lesioned Adult Mouse Brain. Stem Cells 24(6): 1458–1466.

    Article  Google Scholar 

  • Doi, D., et al. 2012. Prolonged Maturation Culture Favors a Reduction in the Tumorigenicity and the Dopaminergic Function of Human ESC-Derived Neural Cells in a Primate Model of Parkinson’s Disease. Stem Cells 30(5): 935–945.

    Article  Google Scholar 

  • Driskell, R.R., et al. 2011. Hair Follicle Dermal Papilla Cells at a Glance. Journal of Cell Science 124(Pt 8): 1179–1182.

    Article  Google Scholar 

  • Du, J., et al. 2014. Comparative Evaluation of Chitosan, Cellulose Acetate, and Polyethersulfone Nanofiber Scaffolds for Neural Differentiation. Carbohydrate Polymers 99: 483–490.

    Article  Google Scholar 

  • Elliott Donaghue, I., et al. 2014. Cell and Biomolecule Delivery for Tissue Repair and Regeneration in the Central Nervous System. Journal of Controlled Release: Official Journal of the Controlled Release Society 190: 219–227.

    Article  Google Scholar 

  • Erdo, F., et al. 2003. Host-Dependent Tumorigenesis of Embryonic Stem Cell Transplantation in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism 23(7): 780–785.

    Google Scholar 

  • Evans, M.J., and M.H. Kaufman. 1981. Establishment in Culture of Pluripotent Cells from Mouse Embryos. Nature 292: 154–156.

    Article  Google Scholar 

  • Fabbro, A., M. Prato, and L. Ballerini. 2013. Carbon Nanotubes in Neuroregeneration and Repair. Advanced Drug Delivery Reviews 65(15): 2034–2044.

    Article  Google Scholar 

  • Fashandi, H., A. Yegane, and M.M. Abolhasani. 2015. Interplay of Liquid-Liquid and Solid–liquid Phase Separation Mechanisms in Porosity and Polymorphism Evolution Within Poly(Vinylidene Fluoride) Nanofibers. Fibers and Polymers 16(2): 326–344.

    Article  Google Scholar 

  • Federal Research Clinical Center of Federal Medical & Biological Agency, R. Neural Stem Cell Transplantation in Traumatic Spinal Cord Injury. Clinicaltrials.gov 10 October 2015]. https://clinicaltrials.gov/ct2/show/NCT02326662?term=spinal+cord+injury+chronic&rank=20

  • Flynn, L., P.D. Dalton, and M.S. Shoichet. 2003. Fiber Templating of Poly(2-Hydroxyethyl Methacrylate) for Neural Tissue Engineering. Biomaterials 24(23): 4265–4272.

    Article  Google Scholar 

  • Frim, D.M., et al. 1994. Implanted Fibroblasts Genetically Engineered to Produce Brain-Derived Neurotrophic Factor Prevent 1-Methyl-4-Phenylpyridinium Toxicity to Dopaminergic Neurons in the Rat. Proceedings of the National Academy of Sciences of the United States of America 91(11): 5104–5108.

    Article  Google Scholar 

  • Gaharwar, A.K., et al. 2013. Nanomaterials in Tissue Engineering: Fabrication and Applications, vol. 56, 1–444. Oxford: Woodhead Publishing.

    Google Scholar 

  • Gao, J., et al. 1998. Surface Modification of Polyanhydride Microspheres. Journal of Pharmaceutical Sciences 87(2): 246–248.

    Article  Google Scholar 

  • Garbayo, E., et al. 2009. Effective GDNF Brain Delivery Using Microspheres—A Promising Strategy for Parkinson’s Disease. Journal of Controlled Release 135(2): 119–126.

    Article  Google Scholar 

  • Gardner, R.L. 1968. Mouse Chimaeras Obtained by the Injection of Cells into the Blastocyst. Nature 220: 596–597.

    Article  Google Scholar 

  • Gaspard, N., et al. 2008. An Intrinsic Mechanism of Corticogenesis from Embryonic Stem Cells. Nature 455(7211): 351–357.

    Article  Google Scholar 

  • Gasperini, L., J.F. Mano, and R.L. Reis. 2014. Natural Polymers for the Microencapsulation of Cells. Journal of the Royal Society Interface 11(100): 20140817.

    Article  Google Scholar 

  • Gelain, F., et al. 2006. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures. PLoS One 1: e119.

    Article  Google Scholar 

  • Gelperina, S., et al. 2005. The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis. American Journal of Respiratory and Critical Care Medicine 172(12): 1487–1490.

    Article  Google Scholar 

  • Ghasemi-Mobarakeh, L., et al. 2008. Electrospun Poly(ɛ-Caprolactone)/Gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials 29(34): 4532–4539.

    Article  Google Scholar 

  • Ghosh, Z., et al. 2010. Persistent Donor Cell Gene Expression Among Human Induced Pluripotent Stem Cells Contributes to Differences with Human Embryonic Stem Cells. PLoS One 5(2): e8975.

    Article  Google Scholar 

  • GhoshMitra, S., et al. 2012. Role of Engineered Nanocarriers for Axon Regeneration and Guidance: Current Status and Future Trends. Advanced Drug Delivery Reviews 64(1): 110–125.

    Article  Google Scholar 

  • Gonzalez-Cordero, A., et al. 2013. Photoreceptor Precursors Derived from Three-Dimensional Embryonic Stem Cell Cultures Integrate and Mature Within Adult Degenerate Retina. Nature Biotechnology 31(8): 741–747.

    Article  Google Scholar 

  • Graff, C.L., and G.M. Pollack. 2005. Nasal Drug Administration: Potential for Targeted Central Nervous System Delivery. Journal of Pharmaceutical Sciences 94(6): 1187–1195.

    Article  Google Scholar 

  • Grozdanic, S.D., et al. 2010. Exogenous Modulation of Intrinsic Optic Nerve Neuroprotective Activity. Graefes Archive for Clinical and Experimental Ophthalmology 248(8): 1105–1116.

    Article  Google Scholar 

  • Guerout, N., et al. 2011. Co-transplantation of Olfactory Ensheathing Cells from Mucosa and Bulb Origin Enhances Functional Recovery After Peripheral Nerve Lesion. PLoS One 6(8): e22816.

    Article  Google Scholar 

  • Gujral, C., et al. 2013. Biodegradable Microparticles for Strictly Regulating the Release of Neurotrophic Factors. Journal of Controlled Release 168(3): 307–316.

    Article  Google Scholar 

  • Gulyaev, A.E., et al. 1999. Significant Transport of Doxorubicin into the Brain with Polysorbate 80-Coated Nanoparticles. Pharmaceutical Research 16(10): 1564–1569.

    Article  Google Scholar 

  • Gunatillake, P.A., and R. Adhikari. 2003. Biodegradable Synthetic Polymers for Tissue Engineering. European Cells and Materials 5: 1–16; discussion 16.

    Google Scholar 

  • Gurdon, J.B., and V. Uehlinger. 1966. “Fertile” Intestine Nuclei. Nature 210: 1240–1241.

    Article  Google Scholar 

  • Gutierrez-Aranda, I., et al. 2010. Human Induced Pluripotent Stem Cells Develop Teratoma More Efficiently and Faster Than Human Embryonic Stem Cells Regardless the Site of Injection. Stem Cells 28(9): 1568–1570.

    Article  Google Scholar 

  • Haile, Y., et al. 2015. Reprogramming of HUVECs into Induced Pluripotent Stem Cells (HiPSCs), Generation and Characterization of HiPSC-Derived Neurons and Astrocytes. PLoS One 10(3): e0119617.

    Article  MathSciNet  Google Scholar 

  • Han, D.W., et al. 2012. Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors. Cell Stem Cell 10(4): 465–472.

    Article  Google Scholar 

  • Harper, M.M., et al. 2009. Brain-Derived Neurotrophic Factor Released from Engineered Mesenchymal Stem Cells Attenuates Glutamate- and Hydrogen Peroxide-Mediated Death of Staurosporine-Differentiated RGC-5 Cells. Experimental Eye Research 89(4): 538–548.

    Article  Google Scholar 

  • Harper, M.M., et al. 2011. Transplantation of BDNF-Secreting Mesenchymal Stem Cells Provides Neuroprotection in Chronically Hypertensive Rat Eyes. Investigative Ophthalmology and Visual Science 52(7): 4506–4515.

    Article  Google Scholar 

  • Hartgerink, J.D., E. Beniash, and S.I. Stupp. 2001. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science 294(5547): 1684–1688.

    Article  Google Scholar 

  • Hasadsri, L., et al. 2009. Functional Protein Delivery into Neurons Using Polymeric Nanoparticles. Journal of Biological Chemistry 284(11): 6972–6981.

    Article  Google Scholar 

  • He, C., et al. 2010. Effects of Particle Size and Surface Charge on Cellular Uptake And Biodistribution of Polymeric Nanoparticles. Biomaterials 31(13): 3657–3666.

    Article  Google Scholar 

  • Hendriks, W.T., et al. 2004. Viral Vector-Mediated Gene Transfer of Neurotrophins to Promote Regeneration of the Injured Spinal Cord. Progress in Brain Research 146: 451–476.

    Article  Google Scholar 

  • Herrera, A.P., et al. 2008. Multifunctional Magnetite Nanoparticles Coated with Fluorescent Thermo-Responsive Polymeric Shells. Journal of Materials Chemistry 18(8): 855–858.

    Article  MathSciNet  Google Scholar 

  • Hirami, Y., et al. 2009. Generation of Retinal Cells from Mouse and Human Induced Pluripotent Stem Cells. Neuroscience Letters 458(3): 126–131.

    Article  Google Scholar 

  • Ho, D., et al. 2015. Hierarchical Patterning of Multifunctional Conducting Polymer Nanoparticles as a Bionic Platform for Topographic Contact Guidance. ACS Nano 9(2): 1767–1774.

    Article  Google Scholar 

  • Hoane, M.R., et al. 2004. Transplantation of Neuronal and Glial Precursors Dramatically Improves Sensorimotor Function but Not Cognitive Function in the Traumatically Injured Brain. Journal of Neurotrauma 21: 163–174.

    Article  Google Scholar 

  • Hockemeyer, D., et al. 2008. A Drug-Inducible System for Direct Reprogramming of Human Somatic Cells to Pluripotency. Cell Stem Cell 3(3): 346–353.

    Article  Google Scholar 

  • Hollands, P. 1987. Differentiation and Grafting of Haemopoietic Stem Cells from Early Postimplantation Mouse Embryos. Development 99(1): 69–76.

    Google Scholar 

  • Hopley, E.L., et al. 2014. Carbon Nanotubes Leading the Way Forward in New Generation 3D Tissue Engineering. Biotechnology Advances 32(5): 1000–1014.

    Article  Google Scholar 

  • Houchin-Ray, T., et al. 2007. Patterned PLG Substrates for Localized DNA Delivery and Directed Neurite Extension. Biomaterials 28(16): 2603–2611.

    Article  Google Scholar 

  • Howard 3rd, M.A., et al. 1989. Intracerebral Drug Delivery in Rats with Lesion-Induced Memory Deficits. Journal of Neurosurgery 71(1): 105–112.

    Article  Google Scholar 

  • Hu, F., et al. 2006. Cellular Response to Magnetic Nanoparticles “PEGylated” Via Surface-Initiated Atom Transfer Radical Polymerization. Biomacromolecules 7(3): 809–816.

    Article  Google Scholar 

  • Huang, Z.-M., et al. 2003. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Composites Science and Technology 63(15): 2223–2253.

    Article  Google Scholar 

  • Huang, Y.-J., et al. 2012. Carbon Nanotube Rope with Electrical Stimulation Promotes the Differentiation and Maturity of Neural Stem Cells. Small 8(18): 2869–2877.

    Article  Google Scholar 

  • Hunt, D.P., et al. 2008. A Highly Enriched Niche of Precursor Cells with Neuronal And Glial Potential Within the Hair Follicle Dermal Papilla of Adult Skin. Stem Cells 26(1): 163–172.

    Article  Google Scholar 

  • Ilie, I., et al. 2012. Influence of Nanomaterials on Stem Cell Differentiation: Designing an Appropriate Nanobiointerface. International Journal of Nanomedicine 7: 3011–3025.

    Google Scholar 

  • Ishikawa, N., et al. 2007. Peripheral Nerve Regeneration Through the Space Formed by a Chitosan Gel Sponge. Journal of Biomedical Materials Research. Part A 83(1): 33–40.

    Article  Google Scholar 

  • Ishikawa, N., et al. 2009. Peripheral Nerve Regeneration by Transplantation of BMSC-Derived Schwann Cells as Chitosan Gel Sponge Scaffolds. Journal of Biomedical Materials Research. Part A 89(4): 1118–1124.

    Article  Google Scholar 

  • Jampel, H.D., et al. 1991. In Vitro Release of Hydrophobic Drugs from Polyanhydride Disks. Ophthalmic Surgery 22(11): 676–680.

    Google Scholar 

  • Jang, S., et al. 2010. Functional Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Using BFGF and Forskolin. BMC Cell Biology 11: 25.

    Article  Google Scholar 

  • Johnson, P.J., et al. 2008. Maintaining Bioactivity of NGF for Controlled Release from PLGA Using PEG. Journal of Biomedical Materials Research. Part A 86A(2): 420–427.

    Article  Google Scholar 

  • Johnson, T.V., et al. 2010. Neuroprotective Effects of Intravitreal Mesenchymal Stem Cell Transplantation in Experimental Glaucoma. Investigative Ophthalmology and Visual Science 51(4): 2051–2059.

    Article  Google Scholar 

  • Jollivet, C., et al. 2004a. Long-Term Effect of Intra-Striatal Glial Cell Line-Derived Neurotrophic Factor-Releasing Microspheres in a Partial Rat Model of Parkinson’s Disease. Neuroscience Letters 356(3): 207–210.

    Article  Google Scholar 

  • Jollivet, C., et al. 2004b. Striatal Implantation of GDNF Releasing Biodegradable Microspheres Promotes Recovery of Motor Function in a Partial Model of Parkinson’s Disease. Biomaterials 25(5): 933–942.

    Article  Google Scholar 

  • Junka, R., et al. 2013. Laminin Functionalized Biomimetic Nanofibers for Nerve Tissue Engineering. Journal of Biomaterials and Tissue Engineering 3(4): 494–502.

    Article  Google Scholar 

  • Kador, K.E., et al. 2013. Tissue Engineering the Retinal Ganglion Cell Nerve Fiber Layer. Biomaterials 34(17): 4242–4250.

    Article  Google Scholar 

  • Kang, H.W., Y. Tabata, and Y. Ikada. 1999. Fabrication of Porous Gelatin Scaffolds for Tissue Engineering. Biomaterials 20(14): 1339–1344.

    Article  Google Scholar 

  • Kang, C.E., et al. 2013. Localized and Sustained Delivery of Fibroblast Growth Factor-2 from a Nanoparticle-Hydrogel Composite for Treatment of Spinal Cord Injury. Cells, Tissues, Organs 197(1): 55–63.

    Article  Google Scholar 

  • Karabekmez, F.E., A. Duymaz, and S.L. Moran. 2009. Early Clinical Outcomes with the Use of Decellularized Nerve Allograft for Repair of Sensory Defects Within the Hand. Hand (N Y) 4(3): 245–249.

    Article  Google Scholar 

  • Karumbayaram, S., et al. 2009. Directed Differentiation of Human-Induced Pluripotent Stem Cells Generates Active Motor Neurons. Stem Cells 27(4): 806–811.

    Article  Google Scholar 

  • Kashi, T.S., et al. 2012. Improved Drug Loading and Antibacterial Activity of Minocycline-Loaded PLGA Nanoparticles Prepared by Solid/Oil/Water Ion Pairing Method. International Journal of Nanomedicine 7: 221–234.

    Google Scholar 

  • Kawai, H., et al. 2010. Tridermal Tumorigenesis of Induced Pluripotent Stem Cells Transplanted in Ischemic Brain. Journal of Cerebral Blood Flow and Metabolism 30(8): 1487–1493.

    Article  Google Scholar 

  • Keeley, R.D., et al. 1991. The Artificial Nerve Graft: A Comparison of Blended Elastomer-Hydrogel with Polyglycolic Acid Conduits. Journal of Reconstructive Microsurgery 7(2): 93–100.

    Article  Google Scholar 

  • Kim, J.H., et al. 2002. Dopamine Neurons Derived from Embryonic Stem Cells Function in an Animal Model of Parkinson’s Disease. Nature 418: 50–56.

    Article  Google Scholar 

  • Kim, J.B., et al. 2009. Direct Reprogramming of Human Neural Stem Cells by OCT4. Nature 461(7264): 643–649.

    Article  Google Scholar 

  • Kim, K., et al. 2010. Epigenetic Memory in Induced Pluripotent Stem Cells. Nature 467(7313): 285–290.

    Article  Google Scholar 

  • Kim, J., et al. 2011a. Functional Integration of Dopaminergic Neurons Directly Converted from Mouse Fibroblasts. Cell Stem Cell 9(5): 413–419.

    Article  Google Scholar 

  • Kim, J.A., et al. 2011b. Enhancement of Neurite Outgrowth in PC12 Cells by Iron Oxide Nanoparticles. Biomaterials 32(11): 2871–2877.

    Article  Google Scholar 

  • Kim, S.-E., et al. 2015. Coextruded, Aligned, and Gradient-Modified Poly(Epsilon-Caprolactone) Fibers as Platforms for Neural Growth. Biomacromolecules 16(3): 860–867.

    Article  Google Scholar 

  • Klassen, H., D.S. Sakaguchi, and M.J. Young. 2004. Stem Cells and Retinal Repair. Progress in Retinal and Eye Research 23(2): 149–181.

    Article  Google Scholar 

  • Kleinsmith, L.J., and G.B. Pierce Jr. 1964. Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Research 24: 1544–1551.

    Google Scholar 

  • Klimanskaya, I., et al. 2004. Derivation and Comparative Assessment of Retinal Pigment Epithelium from Human Embryonic Stem Cells Using Transcriptomics. Cloning and Stem Cells 6: 217–245.

    Article  Google Scholar 

  • Ko, H.F., C. Sfeir, and P.N. Kumta. 2010. Novel Synthesis Strategies for Natural Polymer and Composite Biomaterials as Potential Scaffolds for Tissue Engineering. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 368(1917): 1981–1997.

    Article  Google Scholar 

  • Kocsis, J.D. 2009. Neuroprotection and Immunomodulation by Cell Transplantation Are Becoming Central Themes in Potential Therapeutic Approaches for Cell-Based Therapies. Neuroscience Letters 456(3): 99.

    Article  Google Scholar 

  • Kohane, D.S. 2007. Microparticles and Nanoparticles for Drug Delivery. Biotechnology and Bioengineering 96(2): 203–209.

    Article  Google Scholar 

  • Kraskiewicz, H., et al. 2013. Assembly of Protein-Based Hollow Spheres Encapsulating a Therapeutic Factor. ACS Chemical Neuroscience 4(9): 1297–1304.

    Article  Google Scholar 

  • Kreuter, J. 2013. Mechanism of Polymeric Nanoparticle-Based Drug Transport Across the Blood–Brain Barrier (BBB). Journal of Microencapsulation 30(1): 49–54.

    Article  Google Scholar 

  • Kreuter, J., et al. 1997. Influence of the Type of Surfactant on the Analgesic Effects Induced by the Peptide Dalargin After Its Delivery Across the Blood–Brain Barrier Using Surfactant-Coated Nanoparticles. Journal of Controlled Release 49(1): 81–87.

    Article  Google Scholar 

  • Kriks, S., et al. 2011. Dopamine Neurons Derived from Human ES Cells Efficiently Engraft in Animal Models of Parkinson’s Disease. Nature 480(7378): 547–551.

    Google Scholar 

  • Kulangara, K., et al. 2014. The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons. Biomaterials 35(20): 5327–5336.

    Article  Google Scholar 

  • Kumar, M.N.V.R. 2000. Nano and Microparticles as Controlled Drug Delivery Devices. Journal of Pharmacy and Pharmaceutical Sciences 3(2): 234–258.

    Google Scholar 

  • Kumbar, S.G., C.T. Laurencin, and M. Deng. 2014. Natural and Synthetic Biomedical Polymers, 1–402. Elsevier B.V.

    Google Scholar 

  • Kurozumi, K., et al. 2005. Mesenchymal Stem Cells That Produce Neurotrophic Factors Reduce Ischemic Damage in the Rat Middle Cerebral Artery Occlusion Model. Molecular Therapy 11(1): 96–104.

    Article  Google Scholar 

  • Kyhn, M.V., et al. 2009. Delayed Administration of Glial Cell Line-Derived Neurotrophic Factor (GDNF) Protects Retinal Ganglion Cells in a Pig Model of Acute Retinal Ischemia. Experimental Eye Research 89(6): 1012–1020.

    Article  Google Scholar 

  • Labrador, R.O., M. Butί, and X. Navarro. 1998. Influence of Collagen and Laminin Gels Concentration on Nerve Regeneration After Resection and Tube Repair. Experimental Neurology 149(1): 243–252.

    Article  Google Scholar 

  • Lam, H.J., et al. 2010. In Vitro Regulation of Neural Differentiation and Axon Growth by Growth Factors and Bioactive Nanofibers. Tissue Engineering. Part A 16(8): 2641–2648.

    Article  Google Scholar 

  • Lamba, D.A., J. Gust, and T.A. Reh. 2009. Transplantation of Human Embryonic Stem Cell-Derived Photoreceptors Restores Some Visual Function in Crx-Deficient Mice. Cell Stem Cell 4(1): 73–79.

    Article  Google Scholar 

  • Lampe, K.J., et al. 2011. The Administration of BDNF and GDNF to the Brain Via PLGA Microparticles Patterned Within a Degradable PEG-Based Hydrogel: Protein Distribution and the Glial Response. Journal of Biomedical Materials Research. Part A 96A(3): 595–607.

    Article  Google Scholar 

  • Laterza, C., et al. 2013. iPSC-Derived Neural Precursors Exert a Neuroprotective Role in Immune-Mediated Demyelination Via the Secretion of LIF. Nature Communications 4: 2597.

    Article  Google Scholar 

  • Lavik, E.B., et al. 2005. Fabrication of Degradable Polymer Scaffolds to Direct the Integration and Differentiation of Retinal Progenitors. Biomaterials 26(16): 3187–3196.

    Article  Google Scholar 

  • Leach, M.K., et al. 2011. The Culture of Primary Motor and Sensory Neurons in Defined Media on Electrospun Poly-l-Lactide Nanofiber Scaffolds. Journal of Visualised Experiments 48. http://www.jove.com/details.php?id=2389, doi:10.3791/2389.

  • Lee, S.H., et al. 2000. Efficient Generation of Midbrain and Hindbrain Neurons from Mouse Embryonic Stem Cells. Nature Biotechnology 18: 675–679.

    Article  Google Scholar 

  • Lee, J.Y., et al. 2009. Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications. Biomaterials 30(26): 4325–4335.

    Article  Google Scholar 

  • Lee, J.M., et al. 2012. In Vivo Tracking of Mesechymal Stem Cells Using Fluorescent Nanoparticles in an Osteochondral Repair Model. Molecular Therapy 20(7): 1434–1442.

    Article  Google Scholar 

  • Lee, J.Y., et al. 2014. Controlled Release of Nerve Growth Factor from Heparin-Conjugated Fibrin Gel Within the Nerve Growth Factor-Delivering Implant. Journal of the Korean Association of Oral and Maxillofacial Surgeons 40(1): 3–10.

    Article  Google Scholar 

  • Lee-Kubli, C.A., and P. Lu. 2015. Induced Pluripotent Stem Cell-Derived Neural Stem Cell Therapies for Spinal Cord Injury. Neural Regeneration Research 10(1): 10–16.

    Article  Google Scholar 

  • Lesniak, M.S., et al. 2005. Local Delivery of Doxorubicin for the Treatment of Malignant Brain Tumors in Rats. Anticancer Research 25(6B): 3825–3831.

    Google Scholar 

  • Li, Y., and M. Chopp. 2009. Marrow Stromal Cell Transplantation in Stroke and Traumatic Brain Injury. Neuroscience Letters 456(3): 120–123.

    Article  Google Scholar 

  • Li, D., and Y.N. Xia. 2004. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials 16(14): 1151–1170.

    Article  Google Scholar 

  • Li, X., et al. 2006. Culture of Neural Stem Cells in Calcium Alginate Beads. Biotechnology Progress 22(6): 1683–1689.

    Article  Google Scholar 

  • Li, X.J., et al. 2009. Coordination of Sonic Hedgehog and Wnt Signaling Determines Ventral and Dorsal Telencephalic Neuron Types from Human Embryonic Stem Cells. Development 136(23): 4055–4063.

    Article  Google Scholar 

  • Li, X., et al. 2012a. Human Cord Blood-Derived Multipotent Stem Cells (CB-SCs) Treated with All-Trans-Retinoic Acid (ATRA) Give Rise to Dopamine Neurons. Biochemical and Biophysical Research Communications 419(1): 110–116.

    Article  Google Scholar 

  • Li, X., et al. 2012b. Manipulating Neural-Stem-Cell Mobilization and Migration In Vitro. Acta Biomaterialia 8(6): 2087–2095.

    Article  Google Scholar 

  • Li, X., et al. 2015. A Therapeutic Strategy for Spinal Cord Defect: Human Dental Follicle Cells Combined with Aligned PCL/PLGA Electrospun Material. BioMed Research International 2015: Article ID 197183, 12 p

    Google Scholar 

  • Liang, Y., et al. 2012. Delivery of Cationic Polymer-siRNA Nanoparticles for Gene Therapies in Neural Regeneration. Biochemical and Biophysical Research Communications 421(4): 690–695.

    Article  Google Scholar 

  • Liechty, W.B., et al. 2010. Polymers for Drug Delivery Systems. Annual Review of Chemical and Biomolecular Engineering 1: 149–173.

    Article  Google Scholar 

  • Lin, T.-C., I.-M. Chiu, and S.-H. Hsu. 2012. Biodegradable Alginate Microspheres as the Carriers for Neural Stem Cells. Journal of Neuroscience and Neuroengineering 1(1): 97–104.

    Article  Google Scholar 

  • Liu, X., et al. 2010a. Guidance of Neurite Outgrowth on Aligned Electrospun Polypyrrole/Poly(Styrene-Beta-Isobutylene-Beta-Styrene) Fiber Platforms. Journal of Biomedical Materials Research. Part A 94A(4): 1004–1011.

    Google Scholar 

  • Liu, T., et al. 2010b. Photochemical Crosslinked Electrospun Collagen Nanofibers: Synthesis, Characterization and Neural Stem Cell Interactions. Journal of Biomedical Materials Research. Part A 95(1): 276–282.

    Article  Google Scholar 

  • Liu, J.-J., et al. 2011. Peripheral Nerve Regeneration Using Composite Poly(Lactic Acid-Caprolactone)/Nerve Growth Factor Conduits Prepared by Coaxial Electrospinning. Journal of Biomedical Materials Research. Part A 96A(1): 13–20.

    Article  Google Scholar 

  • Liu, M.L., et al. 2013. Small Molecules Enable Neurogenin 2 to Efficiently Convert Human Fibroblasts into Cholinergic Neurons. Nature Communications 4: 2183.

    Google Scholar 

  • Lopatina, T., et al. 2011. Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth De Novo. PLoS One 6(3): e17899.

    Article  Google Scholar 

  • Lowry, N., et al. 2012. The Effect of Long-Term Release of SHH from Implanted Biodegradable Microspheres on Recovery from Spinal Cord Injury in Mice. Biomaterials 33(10): 2892–2901.

    Article  Google Scholar 

  • Lutz, J.-F., et al. 2006. One-Pot Synthesis of PEGylated Ultrasmall Iron-Oxide Nanoparticles and Their In Vivo Evaluation as Magnetic Resonance Imaging Contrast Agents. Biomacromolecules 7(11): 3132–3138.

    Article  Google Scholar 

  • Mallapragada, S.K., et al. 2015. Enabling Nanomaterial, Nanofabrication and Cellular Technologies for Nanoneuromedicines. Nanomedicine 11(3): 715–729.

    Google Scholar 

  • Marques, S.A., et al. 2010. Predifferentiated Embryonic Stem Cells Promote Functional Recovery After Spinal Cord Compressive Injury. Brain Research 1349: 115–128.

    Article  Google Scholar 

  • Martens, W., et al. 2014. Human Dental Pulp Stem Cells Can Differentiate into Schwann Cells and Promote and Guide Neurite Outgrowth in an Aligned Tissue-Engineered Collagen Construct In Vitro. FASEB Journal 28(4): 1634–1643.

    Article  Google Scholar 

  • Marti, M.E., et al. 2013. Nanomaterials for Neural Tissue Engineering. In Nanomaterials in Tissue Engineering, ed. A.K. Gaharwar, et al., 275–301. Woodhead Publishing.

    Google Scholar 

  • Masui, S., et al. 2007. Pluripotency Governed by Sox2 Via Regulation of Oct3/4 Expression in Mouse Embryonic Stem Cells. Nature Cell Biology 9(6): 625–635.

    Article  Google Scholar 

  • Matsui, T., et al. 2014. Regeneration of the Damaged Central Nervous System Through Reprogramming Technology: Basic Concepts and Potential Application for Cell Replacement Therapy. Experimental Neurology 260: 12–18.

    Article  Google Scholar 

  • Matsumine, H., et al. 2014. Facial Nerve Regeneration Using Basic Fibroblast Growth Factor-Impregnated Gelatin Microspheres in a Rat Model. Journal of Tissue Engineering and Regenerative Medicine doi: 10.1002/term.1884.

    Google Scholar 

  • McCreedy, D.A., and S.E. Sakiyama-Elbert. 2012. Combination Therapies in the CNS: Engineering the Environment. Neuroscience Letters 519(2): 115–121.

    Article  Google Scholar 

  • McDonald, J.W., et al. 1999. Transplanted Embryonic Stem Cells Survive, Differentiate and Promote Recovery in Injured Rat Spinal Cord. Nature Medicine 5: 1410–1412.

    Article  Google Scholar 

  • McMurtrey, R.J. 2014. Patterned and Functionalized Nanofiber Scaffolds in Three-Dimensional Hydrogel Constructs Enhance Neurite Outgrowth and Directional Control. Journal of Neural Engineering 11(6): 066009.

    Article  Google Scholar 

  • Meli, L., et al. 2014. Three Dimensional Cellular Microarray Platform for Human Neural Stem Cell Differentiation and Toxicology. Stem Cell Research 13(1): 36–47.

    Article  Google Scholar 

  • Melissinaki, V., et al. 2011. Direct Laser Writing of 3D Scaffolds for Neural Tissue Engineering Applications. Biofabrication 3(4): 045005.

    Article  Google Scholar 

  • Meyer, J.S., et al. 2009. Modeling Early Retinal Development with Human Embryonic and Induced Pluripotent Stem Cells. Proceedings of the National Academy of Sciences of the United States of America 106(39): 16698–16703.

    Article  Google Scholar 

  • Miller, C., et al. 2001a. Oriented Schwann Cell Growth on Micropatterned Biodegradable Polymer Substrates. Biomaterials 22(11): 1263–1269.

    Article  Google Scholar 

  • Miller, C., S. Jeftinija, and S. Mallapragada. 2001b. Micropatterned Schwann Cell-Seeded Biodegradable Polymer Substrates Significantly Enhance Neurite Alignment and Outgrowth. Tissue Engineering 7(6): 705–715.

    Article  Google Scholar 

  • Mudshinge, S.R., et al. 2011. Nanoparticles: Emerging Carriers for Drug Delivery. Saudi Pharmaceutical Journal 19(3): 129–141.

    Article  Google Scholar 

  • Mujtaba, T., et al. 1999. Lineage-Restricted Neural Precursors Can Be Isolated from Both the Mouse Neural Tube and Cultured ES Cells. Developmental Biology 214: 113–127.

    Article  Google Scholar 

  • Musumeci, T., et al. 2006. PLA/PLGA Nanoparticles for Sustained Release of Docetaxel. International Journal of Pharmaceutics 325(1–2): 172–179.

    Article  Google Scholar 

  • Nakayama, K., et al. 2007a. Enhancement of Peripheral Nerve Regeneration Using Bioabsorbable Polymer Tubes Packed with Fibrin Gel. Artificial Organs 31(7): 500–508.

    Article  Google Scholar 

  • Nakayama, K., et al. 2007b. Regeneration of Peripheral Nerves by Bioabsorbable Polymer Tubes with Fibrin Gel. Journal of Nanoscience and Nanotechnology 7(3): 730–733.

    Article  Google Scholar 

  • Neal, R.A., et al. 2012. Alignment and Composition of Laminin-Polycaprolactone Nanofiber Blends Enhance Peripheral Nerve Regeneration. Journal of Biomedical Materials Research. Part A 100A(2): 406–423.

    Article  Google Scholar 

  • Neeley, W.L., et al. 2008. A Microfabricated Scaffold for Retinal Progenitor Cell Grafting. Biomaterials 29(4): 418–426.

    Article  Google Scholar 

  • Nerve Regeneration-Guided Collagen Scaffold and Mesenchymal Stem Cells Transplantation in Spinal Cord Injury Patients. Clinicaltrials.gov 3 October 2015]. https://clinicaltrials.gov/ct2/show/NCT02352077?term=scaffold&rank=17

  • Ni, W.F., et al. 2010. In Vitro Neural Differentiation of Bone Marrow Stromal Cells Induced by Cocultured Olfactory Ensheathing Cells. Neuroscience Letters 475(2): 99–103.

    Article  Google Scholar 

  • Nisbet, D.R., et al. 2008. Neural Tissue Engineering of the CNS Using Hydrogels. Journal of Biomedical Materials Research Part B—Applied Biomaterial 87b(1): 251–263.

    Google Scholar 

  • Nizzardo, M., et al. 2014. Minimally Invasive Transplantation of iPSC-Derived ALDHhiSSCloVLA4+ Neural Stem Cells Effectively Improves the Phenotype of an Amyotrophic Lateral Sclerosis Model. Human Molecular Genetics 23(2): 342–354.

    Article  Google Scholar 

  • Norizadeh-Abbariki, T., et al. 2014. Superparamagnetic Nanoparticles Direct Differentiation of Embryonic Stem Cells into Skeletal Muscle Cells. Journal of Biomaterials and Tissue Engineering 4(7): 579–585.

    Article  Google Scholar 

  • Oh, J., et al. 2009. Soluble Factors from Neocortical Astrocytes Enhance Neuronal Differentiation of Neural Progenitor Cells from Adult Rat Hippocampus on Micropatterned Polymer Substrates. Journal of Biomedical Materials Research. Part A 91(2): 575–585.

    Article  Google Scholar 

  • Okabe, S., et al. 1996. Development of Neuronal Precursor Cells and Functional Postmitotic Neurons from Embryonic Stem Cells In Vitro. Mechanisms of Development 59(1): 89–102.

    Article  Google Scholar 

  • Okita, K., T. Ichisaka, and S. Yamanaka. 2007. Generation of Germline-Competent Induced Pluripotent Stem Cells. Nature 448(7151): 313–317.

    Article  Google Scholar 

  • Panseri, S., et al. 2008. Electrospun Micro- and Nanofiber Tubes for Functional Nervous Regeneration in Sciatic Nerve Transections. BMC Biotechnology 8: 39.

    Article  Google Scholar 

  • Park, D., et al. 2013. Human Adipose Tissue-Derived Mesenchymal Stem Cells Improve Cognitive Function and Physical Activity in Ageing Mice. Journal of Neuroscience Research 91(5): 660–670.

    Article  Google Scholar 

  • Patel, S., et al. 2007. Bioactive Nanofibers: Synergistic Effects of Nanotopography and Chemical Signaling on Cell Guidance. Nano Letters 7(7): 2122–2128.

    Article  Google Scholar 

  • Pateman, C.J., et al. 2015. Nerve Guides Manufactured from Photocurable Polymers to Aid Peripheral Nerve Repair. Biomaterials 49: 77–89.

    Article  Google Scholar 

  • Pathak, S., et al. 2006. Quantum Dot Applications to Neuroscience: New Tools for Probing Neurons and Glia. The Journal of Neuroscience 26(7): 1893–1895.

    Article  Google Scholar 

  • Péan, J.-M., et al. 2000. Intraseptal Implantation of NGF-Releasing Microspheres Promote the Survival of Axotomized Cholinergic Neurons. Biomaterials 21(20): 2097–2101.

    Article  Google Scholar 

  • Pfiesterer, U., et al. 2011. Direct Conversion of Human Fibroblasts to Dopaminergic Neurons. PNAS 25: 10343–10348.

    Article  Google Scholar 

  • Pfizer. A Study of Implantation of Retinal Pigment Epithelium in Subjects with Acute Wet Age Related Macular Degeneration. Clinicaltrials.gov 3 October 2015]. https://www.clinicaltrials.gov/ct2/show/NCT01691261?term=embryonic+stem+cells+AMD&rank=4

  • Pharmaceuticals, N. A Phase 2 Multicenter Randomized Clinical Trial of CNTF for MacTel. Clinicaltrials.gov 3 October 2015]. https://clinicaltrials.gov/ct2/show/NCT01949324?term=neurotech&rank=18

  • Pharmaceuticals, N. Retinal Imaging of Subjects Implanted with Ciliary Neurotrophic Factor (CNTF)-Releasing Encapsulated Cell Implant for Early-Stage Retinitis Pigmentosa. Clinicaltrials.gov 3 October 2015]. https://clinicaltrials.gov/ct2/show/NCT01530659?term=neurotech&rank=19

  • Pharmaceuticals, N. Study of the Intravitreal Implantation of NT-503-3 Encapsulated Cell Technology (ECT) for the Treatment of Recurrent Choroidal Neovascularization (CNV) Secondary to Age-related Macular Degeneration (AMD). Clinicaltrials.gov 3 October 2015]. https://clinicaltrials.gov/ct2/show/NCT02228304?term=neurotech&rank=14

  • Prabhakaran, M.P., et al. 2011. Electrospun Conducting Polymer Nanofibers and Electrical Stimulation of Nerve Stem Cells. Journal of Bioscience and Bioengineering 112(5): 501–507.

    Article  Google Scholar 

  • Prockop, D.J., et al. 2000. Potential Use of Marrow Stromal Cells as Therapeutic Vectors for Diseases of the Central Nervous System. Progress in Brain Research 128: 293–297.

    Article  Google Scholar 

  • Qi, L., et al. 2013. The Effects of Topographical Patterns and Sizes on Neural Stem Cell Behavior. PLoS One 8(3): e59022.

    Article  Google Scholar 

  • Recknor, J.B., et al. 2004. Oriented Astroglial Cell Growth on Micropatterned Polystyrene Substrates. Biomaterials 25(14): 2753–2767.

    Article  Google Scholar 

  • Recknor, J.B., D.S. Sakaguchi, and S.K. Mallapragada. 2006. Directed Growth and Selective Differentiation of Neural Progenitor Cells on Micropatterned Polymer Substrates. Biomaterials 27(22): 4098–4108.

    Article  Google Scholar 

  • Redenti, S., et al. 2009. Engineering Retinal Progenitor Cell and Scrollable Poly(Glycerol-Sebacate) Composites for Expansion and Subretinal Transplantation. Biomaterials 30(20): 3405–3414.

    Article  Google Scholar 

  • Ren, Y.-J., et al. 2013. Enhanced Differentiation of Human Neural Crest Stem Cells Towards the Schwann Cell Lineage by Aligned Electrospun Fiber Matrix. Acta Biomaterialia 9(8): 7727–7736.

    Article  Google Scholar 

  • Riggio, C., et al. 2012. Poly-l-Lysine-Coated Magnetic Nanoparticles as Intracellular Actuators for Neural Guidance. International Journal of Nanomedicine 7: 3155–3166.

    Google Scholar 

  • Roberts, M.J., et al. 2014. Growth of Primary Motor Neurons on Horizontally Aligned Carbon Nanotube Thin Films and Striped Patterns. Journal of Neural Engineering 11(3): 036013.

    Article  Google Scholar 

  • Rolandi, M., and R. Rolandi. 2014. Self-Assembled Chitin Nanofibers and Applications. Advances in Colloid and Interface Science 207: 216–222.

    Article  Google Scholar 

  • Romanyuk, N., et al. 2015. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair. Cell Transplant 24(9): 1781–1797.

    Article  Google Scholar 

  • Rubio-Retama, J., et al. 2007. Synthesis and Characterization of Thermosensitive PNIPAM Microgels Covered with Superparamagnetic γ-Fe2O3 Nanoparticles. Langmuir 23(20): 10280–10285.

    Article  Google Scholar 

  • Rutkowski, G.E., et al. 2004. Synergistic Effects of Micropatterned Biodegradable Conduits and Schwann Cells on Sciatic Nerve Regeneration. Journal of Neural Engineering 1(3): 151–157.

    Article  MathSciNet  Google Scholar 

  • Safford, K.M., et al. 2002. Neurogenic Differentiation of Murine and Human Adipose-Derived Stromal Cells. Biochemical and Biophysical Research Communications 294(2): 371–379.

    Article  Google Scholar 

  • Sakai, K., et al. 2012. Human Dental Pulp-Derived Stem Cells Promote Locomotor Recovery After Complete Transection of the Rat Spinal Cord by Multiple Neuro-Regenerative Mechanisms. The Journal of Clinical Investigation 122(1): 80–90.

    Google Scholar 

  • Sakiyama, S.E., J.C. Schense, and J.A. Hubbell. 1999. Incorporation of Heparin-Binding Peptides into Fibrin Gels Enhances Neurite Extension: An Example of Designer Matrices in Tissue Engineering. The FASEB Journal 13(15): 2214–2224.

    Google Scholar 

  • Salmon, M.E., P.E. Russell, and E.B. Troughton. 2005. Growth and Characterization of Self-Assembled Nanofibers. Microscopy and Microanalysis 11(S02): 372–373.

    Article  Google Scholar 

  • Santos, T., et al. 2012. Polymeric Nanoparticles to Control the Differentiation of Neural Stem Cells in the Subventricular Zone of the Brain. ACS Nano 6(12): 10463–10474.

    Google Scholar 

  • Sasaki, M., et al. 2009. BDNF-Hypersecreting Human Mesenchymal Stem Cells Promote Functional Recovery, Axonal Sprouting, and Protection of Corticospinal Neurons After Spinal Cord Injury. The Journal of Neuroscience 29(47): 14932–14941.

    Article  Google Scholar 

  • Schense, J.C., et al. 2000. Enzymatic Incorporation of Bioactive Peptides into Fibrin Matrices Enhances Neurite Extension. Nature Biotechnology 18(4): 415–419.

    Article  Google Scholar 

  • Schmauss, D., et al. 2014. Is Nerve Regeneration After Reconstruction with Collagen Nerve Conduits Terminated After 12 Months? The Long-Term Follow-Up of Two Prospective Clinical Studies. Journal of Reconstructive Microsurgery 30(8): 561–568.

    Article  Google Scholar 

  • Schnell, E., et al. 2007. Guidance of Glial Cell Migration and Axonal Growth on Electrospun Nanofibers of Poly-Epsilon-Caprolactone and a Collagen/Poly-Epsilon-Caprolactone Blend. Biomaterials 28(19): 3012–3025.

    Article  Google Scholar 

  • Schuldiner, M., et al. 2001. Induced Neuronal Differentiation of Human Embryonic Stem Cells. Brain Research 913: 201–205.

    Article  Google Scholar 

  • Schwartz, S.D., et al. 2012. Embryonic Stem Cell Trials for Macular Degeneration: A Preliminary Report. The Lancet 379(9817): 713–720.

    Article  Google Scholar 

  • Schwartz, M.P., et al. 2015. Human Pluripotent Stem Cell-Derived Neural Constructs for Predicting Neural Toxicity. Proceedings of the National Academy of Sciences of the United States of America 112: 12516–12521.

    Article  Google Scholar 

  • Sciences, C.A.o. Functional Neural Regeneration Collagen Scaffold Transplantation in Acute Spinal Cord Injury Patients. Clinicaltrials.gov 3 October 2016]. https://clinicaltrials.gov/ct2/show/NCT02510365?term=scaffold&rank=16

  • Sell, S.A., et al. 2010. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers 2(4): 522–553.

    Article  Google Scholar 

  • Sharma, A.D., et al. 2015. High Throughput Characterization of Adult Stem Cells Engineered for Delivery of Therapeutic Factors for Neuroprotective Strategies. Journal of Visualised Experiments 95: e52242.

    Google Scholar 

  • Sharma, A.D., et al. 2016. Oriented Growth and Transdifferentiation of Mesenchymal Stem Cells Towards a Schwann cell Fate on Micropatterned Substrates. Journal of Bioscience and Bioengineering 121(3): 325–335.

    Article  Google Scholar 

  • Shen, C.C., Y.C. Yang, and B.S. Liu. 2012. Peripheral Nerve Repair of Transplanted Undifferentiated Adipose Tissue-Derived Stem Cells in a Biodegradable Reinforced Nerve Conduit. Journal of Biomedical Materials Research. Part A 100(1): 48–63.

    Article  Google Scholar 

  • Shi, Y., P. Kirwan, and F.J. Livesey. 2012. Directed Differentiation of Human Pluripotent Stem Cells to Cerebral Cortex Neurons and Neural Networks. Nature Protocols 7(10): 1836–1846.

    Article  Google Scholar 

  • Shukla, S., et al. 2009. Enhanced Survival and Function of Neural Stem Cells-Derived Dopaminergic Neurons Under Influence of Olfactory Ensheathing Cells in Parkinsonian Rats. Journal of Neurochemistry 109(2): 436–451.

    Article  Google Scholar 

  • Siminovitch, L., E.A. McCulloch, and J.E. Till. 1963. The Distribution of Colony-Forming Cells Among Spleen Colonies. Journal of Cellular and Comparative Physiology 62(3): 327–336.

    Article  Google Scholar 

  • Singh, R., and J.W. Lillard Jr. 2009. Nanoparticle-Based Targeted Drug Delivery. Experimental and Molecular Pathology 86(3): 215–223.

    Article  Google Scholar 

  • Skalova, S., et al. 2015. Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine. International Journal of Molecular Sciences 16(2): 4043–4067.

    Article  Google Scholar 

  • Skop, N.B., et al. 2013. Heparin Crosslinked Chitosan Microspheres for the Delivery of Neural Stem Cells and Growth Factors for Central Nervous System Repair. Acta Biomaterialia 9(6): 6834–6843.

    Article  Google Scholar 

  • Son, E.Y., et al. 2011. Conversion of Mouse and Human Fibroblasts into Functional Spinal Motor Neurons. Cell Stem Cell 9(3): 205–218.

    Article  Google Scholar 

  • Song, J., et al. 2007. Human Embryonic Stem Cell-Derived Neural Precursor Transplants Attenuate Apomorphine-Induced Rotational Behavior in Rats with Unilateral Quinolinic Acid Lesions. Neuroscience Letters 423(1): 58–61.

    Article  Google Scholar 

  • Soppimath, K.S., et al. 2001. Biodegradable Polymeric Nanoparticles as Drug Delivery Devices. Journal of Controlled Release 70(1–2): 1–20.

    Article  Google Scholar 

  • Spivey, E.C., et al. 2012. The Fundamental Role of Subcellular Topography in Peripheral Nerve Repair Therapies. Biomaterials 33(17): 4264–4276.

    Article  Google Scholar 

  • Stabenfeldt, S.E., A.J. Garcia, and M.C. LaPlaca. 2006. Thermoreversible Laminin-Functionalized Hydrogel for Neural Tissue Engineering. Journal of Biomedical Materials Research Part A 77a(4): 718–725.

    Google Scholar 

  • Stanwick, J.C., M.D. Baumann, and M.S. Shoichet. 2012a. Enhanced Neurotrophin-3 Bioactivity and Release from a Nanoparticle-Loaded Composite Hydrogel. Journal of Controlled Release 160(3): 666–675.

    Article  Google Scholar 

  • Stanwick, J.C., M.D. Baumann, and M.S. Shoichet. 2012b. In Vitro Sustained Release of Bioactive Anti-NogoA, a Molecule in Clinical Development for Treatment of Spinal Cord Injury. International Journal of Pharmaceutics 426(1–2): 284–290.

    Article  Google Scholar 

  • Steiniger, S.C., et al. 2004. Chemotherapy of Glioblastoma in Rats Using Doxorubicin-Loaded Nanoparticles. International Journal of Cancer 109(5): 759–767.

    Article  Google Scholar 

  • Su, G., et al. 2013. Direct Conversion of Fibroblasts into Neural Progenitor-Like Cells by Forced Growth into 3D Spheres on Low Attachment Surfaces. Biomaterials 34(24): 5897–5906.

    Article  Google Scholar 

  • Subbiah, T., et al. 2005. Electrospinning of Nanofibers. Journal of Applied Polymer Science 96(2): 557–569.

    Article  Google Scholar 

  • Subramanian, A., U.M. Krishnan, and S. Sethuraman. 2011. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomedical Materials 6(2): 025004.

    Article  Google Scholar 

  • Subramanian, A., U.M. Krishnan, and S. Sethuraman. 2012. Axially Aligned Electrically Conducting Biodegradable Nanofibers for Neural Regeneration. Journal of Materials Science: Materials in Medicine 23(7): 1797–1809.

    Google Scholar 

  • Suri, S., and C.E. Schmidt. 2010. Cell-Laden Hydrogel Constructs of Hyaluronic Acid, Collagen, and Laminin for Neural Tissue Engineering. Tissue Engineering. Part A 16(5): 1703–1716.

    Article  Google Scholar 

  • Suzuki, K., et al. 1999. Regeneration of Transected Spinal Cord in Young Adult Rats Using Freeze‐Dried Alginate Gel. NeuroReport 10(14): 2891–2894.

    Article  Google Scholar 

  • Tada, M., et al. 2001. Nuclear Reprogramming of Somatic Cells by In Vitro Hybridization with ES Cells. Current Biology 11: 1553–1558.

    Article  Google Scholar 

  • Takahashi, K., and S. Yamanaka. 2006. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126(4): 663–676.

    Article  Google Scholar 

  • Takahashi, K., et al. 2007. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131(5): 861–872.

    Article  Google Scholar 

  • Tamada, J.A., and R. Langer. 1993. Erosion Kinetics of Hydrolytically Degradable Polymers. Proceedings of the National Academy of Sciences 90(2): 552–556.

    Article  Google Scholar 

  • Tang, S., et al. 2013. The Effects of Gradients of Nerve Growth Factor Immobilized PCLA Scaffolds on Neurite Outgrowth In Vitro and Peripheral Nerve Regeneration in Rats. Biomaterials 34(29): 7086–7096.

    Article  Google Scholar 

  • Temple, S. 2001. The Development of Neural Stem Cells. Nature 414(6859): 112–117.

    Article  Google Scholar 

  • Terada, N., et al. 2002. Bone Marrow Cells Adopt the Phenotype of Other Cells by Spontaneous Cell Fusion. Nature 416(6880): 542–545.

    Article  Google Scholar 

  • Therapeutics, I. Pilot Study of Clinical Safety and Feasibility of the PLGA Poly-L-Lysine Scaffold for the Treatment of Complete (AIS A) Traumatic Acute Spinal Cord Injury. Clinicaltrials.gov 3 October 2015]. https://clinicaltrials.gov/ct2/show/NCT02138110?spons=invivo&rank=1

  • Thier, M., et al. 2012. Direct Conversion of Fibroblasts into Stably Expandable Neural Stem Cells. Cell Stem Cell 10(4): 473–479.

    Article  Google Scholar 

  • Thoma, E.C., et al. 2014. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells. Stem Cell Reports 3(4): 539–547.

    Article  Google Scholar 

  • Thomson, J.A., et al. 1998. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282: 1145–1147.

    Article  Google Scholar 

  • Till, J.E., and C.E. Mc. 1961. A Direct Measurement of the Radiation Sensitivity of Normal Mouse Bone Marrow Cells. Radiation Research 14: 213–222.

    Article  Google Scholar 

  • Tomita, M., et al. 2002. Bone Marrow-Derived Stem Cells Can Differentiate into Retinal Cells in Injured Rat Retina. Stem Cells 20(4): 279–283.

    Article  Google Scholar 

  • Tomita, M., et al. 2005. Biodegradable Polymer Composite Grafts Promote the Survival and Differentiation of Retinal Progenitor Cells. Stem Cells 23(10): 1579–1588.

    Article  Google Scholar 

  • Torres, M.P., et al. 2006. Synthesis and Characterization of Novel Polyanhydrides with Tailored Erosion Mechanisms. Journal of Biomedical Materials Research. Part A 76(1): 102–110.

    Article  Google Scholar 

  • Tran, P.A., L. Zhang, and T.J. Webster. 2009. Carbon Nanofibers and Carbon Nanotubes in Regenerative Medicine. Advanced Drug Delivery Reviews 61(12): 1097–1114.

    Article  Google Scholar 

  • Tsai, S.Y., et al. 2010. Oct4 and klf4 Reprogram Dermal Papilla Cells into Induced Pluripotent Stem Cells. Stem Cells 28(2): 221–228.

    Google Scholar 

  • Tursun, B., et al. 2011. Direct Conversion of C. elegans Germ Cells into Specific Neuron Types. Science 331(6015): 304–308.

    Article  Google Scholar 

  • Vasita, R., and D.S. Katti. 2006. Nanofibers and Their Applications in Tissue Engineering. International Journal of Nanomedicine 1(1): 15–30.

    Article  Google Scholar 

  • Vu, T.Q., et al. 2005. Peptide-Conjugated Quantum Dots Activate Neuronal Receptors and Initiate Downstream Signaling of Neurite Growth. Nano Letters 5(4): 603–607.

    Article  Google Scholar 

  • Wakayama, T., et al. 1998. Full-Term Development of Mice From Enucleated Oocytes Injected with Cumulus Cell Nuclei. Nature 394: 369–374.

    Article  Google Scholar 

  • Wang, Y., et al. 2004. Controlled Release of Ethacrynic Acid from Poly(Lactide-Co-Glycolide) Films for Glaucoma Treatment. Biomaterials 25(18): 4279–4285.

    Article  Google Scholar 

  • Wang, Q., et al. 2006. Neural Stem Cells Transplantation in Cortex in a Mouse Model of Alzheimer’s Disease. Journal of Medical Investigation 53: 61–69.

    Article  Google Scholar 

  • Wang, Y.-C., et al. 2008. Sustained Intraspinal Delivery of Neurotrophic Factor Encapsulated in Biodegradable Nanoparticles Following Contusive Spinal Cord Injury. Biomaterials 29(34): 4546–4553.

    Article  Google Scholar 

  • Wang, N., et al. 2009. Alginate Encapsulation Technology Supports Embryonic Stem Cells Differentiation into Insulin-Producing Cells. Journal of Biotechnology 144(4): 304–312.

    Article  Google Scholar 

  • Wang, W., et al. 2010. Enhancement of Nerve Regeneration Along a Chitosan Nanofiber Mesh Tube on Which Electrically Polarized Beta-Tricalcium Phosphate Particles Are Immobilized. Acta Biomaterialia 6(10): 4027–4033.

    Article  Google Scholar 

  • Wang, Y., et al. 2011. Biocompatibility Evaluation of Electrospun Aligned Poly (Propylene Carbonate) Nanofibrous Scaffolds with Peripheral Nerve Tissues and Cells In Vitro. Chinese Medical Journal 124(15): 2361–2366.

    Google Scholar 

  • Wang, T.-Y., et al. 2012. Promoting Engraftment of Transplanted Neural Stem Cells/Progenitors Using Biofunctionalised Electrospun Scaffolds. Biomaterials 33(36): 9188–9197.

    Article  Google Scholar 

  • Wang, S., et al. 2013. Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination. Cell Stem Cell 12(2): 252–264.

    Article  Google Scholar 

  • Wangensteen, K.J., and L.K. Kalliainen. 2010. Collagen Tube Conduits in Peripheral Nerve Repair: A Retrospective Analysis. Hand (N Y) 5(3): 273–277.

    Article  Google Scholar 

  • Wernig, M., et al. 2008. Neurons Derived from Reprogrammed Fibroblasts Functionally Integrate into the Fetal Brain and Improve Symptoms of Rats with Parkinson’s Disease. Proceedings of the National Academy of Sciences of the United States of America 105(15): 5856–5861.

    Article  Google Scholar 

  • Westmoreland, J.J., C.R. Hancock, and B.G. Condie. 2001. Neuronal Development of Embryonic Stem Cells: A Model of GABAergic Neuron Differentiation. Biochemical and Biophysical Research Communications 284(3): 674–680.

    Article  Google Scholar 

  • Wichterle, H., et al. 2002. Directed Differentiation of Embryonic Stem Cells into Motor Neurons. Cell 110: 385–397.

    Article  Google Scholar 

  • Wilmut, I., et al. 2002. Somatic Cell Nuclear Transfer. Nature 419: 583–586.

    Article  Google Scholar 

  • Wilson, K.D., et al. 2009. MicroRNA Profiling of Human-Induced Pluripotent Stem Cells. Stem Cells and Development 18(5): 749–758.

    Article  Google Scholar 

  • Wood, M.D., et al. 2013. Fibrin Gels Containing GDNF Microspheres Increase Axonal Regeneration After Delayed Peripheral Nerve Repair. Regenerative Medicine 8(1): 27–37.

    Article  Google Scholar 

  • Woodbury, D., et al. 2000. Adult Rat and Human Bone Marrow Stromal Cells Differentiate into Neurons. Journal of Neuroscience Research 61(4): 364–370.

    Article  Google Scholar 

  • Wu, M.P., et al. 1994. In Vivo Versus In Vitro Degradation of Controlled Release Polymers for Intracranial Surgical Therapy. Journal of Biomedical Materials Research 28(3): 387–395.

    Article  Google Scholar 

  • Xia, H., et al. 2014. Directed Neurite Growth of Rat Dorsal Root Ganglion Neurons and Increased Colocalization with Schwann Cells on Aligned Poly(Methyl Methacrylate) Electrospun Nanofibers. Brain Research 1565: 18–27.

    Article  Google Scholar 

  • Xu, X.Y., et al. 2003. Peripheral Nerve Regeneration with Sustained Release of Poly(Phosphoester) Microencapsulated Nerve Growth Factor Within Nerve Guide Conduits. Biomaterials 24(13): 2405–2412.

    Article  Google Scholar 

  • Xu, T., et al. 2006. Viability and Electrophysiology of Neural Cell Structures Generated by the Inkjet Printing Method. Biomaterials 27(19): 3580–3588.

    Google Scholar 

  • Yanagisawa, D., et al. 2006. Improvement of Focal Ischemia-Induced Rat Dopaminergic Dysfunction by Striatal Transplantation of Mouse Embryonic Stem Cells. Neuroscience Letters 407(1): 74–79.

    Article  Google Scholar 

  • Yang, F., et al. 2004. Fabrication of Nano-Structured Porous PLLA Scaffold Intended for Nerve Tissue Engineering. Biomaterials 25(10): 1891–1900.

    Article  Google Scholar 

  • Yang, F., et al. 2005a. Electrospinning of Nano/Micro Scale Poly(l-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials 26(15): 2603–2610.

    Article  Google Scholar 

  • Yang, Y., et al. 2005b. Neurotrophin Releasing Single and Multiple Lumen Nerve Conduits. Journal of Controlled Release 104(3): 433–446.

    Article  Google Scholar 

  • Yang, D., et al. 2008. Human Embryonic Stem Cell-Derived Dopaminergic Neurons Reverse Functional Deficit in Parkinsonian Rats. Stem Cells 26(1): 55–63.

    Article  Google Scholar 

  • Yao, L., F. Phan, and Y.C. Li. 2013. Collagen Microsphere Serving as a Cell Carrier Supports Oligodendrocyte Progenitor Cell Growth and Differentiation for Neurite Myelination In Vitro. Stem Cell Research and Therapy 4: 109.

    Article  Google Scholar 

  • Yin, Y., et al. 2014. Collagen Nanofibers Facilitated Presynaptic Maturation in Differentiated Neurons from Spinal-Cord-Derived Neural Stem Cells Through MAPK/ERK1/2-Synapsin I Signaling Pathway. Biomacromolecules 15(7): 2449–2460.

    Article  Google Scholar 

  • Yoon, D.M., and J.P. Fisher. 2009. Natural and Synthetic Polymer Scaffolds. In Biomedical Materials, ed. Narayan, 415–442. New York: Springer.

    Google Scholar 

  • Yuan, T., et al. 2013. Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells Survive, Migrate, Differentiate, and Improve Neurologic Function in a Rat Model of Middle Cerebral Artery Occlusion. Stem Cell Research and Therapy 4: 73–83.

    Article  Google Scholar 

  • Zeng, W., et al. 2014. Incorporation of Chitosan Microspheres into Collagen-Chitosan Scaffolds for the Controlled Release of Nerve Growth Factor. PLoS One 9(7): e101300.

    Article  Google Scholar 

  • Zhang, S.C., et al. 2001. In Vitro Differentiation of Transplantable Neural Precursors from Human Embryonic Stem Cells. Nature Biotechnology 19: 1129–1133.

    Article  Google Scholar 

  • Zhang, Y., et al. 2005. Recent Development of Polymer Nanofibers for Biomedical and Biotechnological Applications. Journal of Materials Science: Materials in Medicine 16(10): 933–946.

    Google Scholar 

  • Zhang, Y., et al. 2012. Small Molecules, Big Roles—The Chemical Manipulation of Stem Cell Fate and Somatic Cell Reprogramming. Journal of Cell Science 125(Pt 23): 5609–5620.

    Article  Google Scholar 

  • Zhang, K., et al. 2014. Aligned SF/P(LLA-CL)-Blended Nanofibers Encapsulating Nerve Growth Factor for Peripheral Nerve Regeneration. Journal of Biomedical Materials Research. Part A 102(8): 2680–2691.

    Article  Google Scholar 

  • Zhao, L.R., et al. 2002. Human Bone Marrow Stem Cells Exhibit Neural Phenotypes and Ameliorate Neurological Deficits After Grafting into the Ischemic Brain of Rats. Experimental Neurology 174(1): 11–20.

    Article  Google Scholar 

  • Zhao, X.Y., et al. 2009. iPS Cells Produce Viable Mice Through Tetraploid Complementation. Nature 461(7260): 86–90.

    Article  Google Scholar 

  • Zhao, J.H., et al. 2011. Preparation, Structure and Crystallinity of Chitosan Nano-Fibers by a Solid–Liquid Phase Separation Technique. Carbohydrate Polymers 83(4): 1541–1546.

    Article  Google Scholar 

  • Zheng, W., et al. 2010. Therapeutic Benefits of Human Mesenchymal Stem Cells Derived from Bone Marrow After Global Cerebral Ischemia. Brain Research 1310: 8–16.

    Article  Google Scholar 

  • Zhou, J., et al. 2010. High-Efficiency Induction of Neural Conversion in Human ESCs and Human Induced Pluripotent Stem Cells with a Single Chemical Inhibitor of Transforming Growth Factor Beta Superfamily Receptors. Stem Cells 28(10): 1741–1750.

    Article  Google Scholar 

  • Zhu, J., and R.E. Marchant. 2011. Design Properties of Hydrogel Tissue-Engineering Scaffolds. Expert Review of Medical Devices 8(5): 607–626.

    Article  Google Scholar 

  • Zhu, B., et al. 2014. A Study of Unidirectionally Aligned Collagen-Silk Composite Fibers and the Application in hdpPSC Neural Differentiation. Microscopy and Microanalysis 20(Suppl. S3): 1436–1437.

    Google Scholar 

  • Zimmer, A., and J. Kreuter. 1995. Microspheres and Nanoparticles Used in Ocular Delivery Systems. Advanced Drug Delivery Reviews 16(1): 61–73.

    Article  Google Scholar 

  • Zuk, P.A., et al. 2002. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Molecular Biology of the Cell 13(12): 4279–4295.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the US Army Medical Research and Materiel Command under contract W81XWH-11-1-0700 and the Stem Cell Biology Fund for funding. Illustrations were prepared by faculty and undergraduate students from the Biological and Pre-Medical Illustration Program (BPMI) at Iowa State University (Professor K.E. Moss, E.L. Wichers, S.D. Mientka, H. Sinsel, C. Swanberg, and R. Rossiter).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald S. Sakaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sandquist, E.J., Uz, M., Sharma, A.D., Patel, B.B., Mallapragada, S.K., Sakaguchi, D.S. (2016). Stem Cells, Bioengineering, and 3-D Scaffolds for Nervous System Repair and Regeneration. In: Zhang, L., Kaplan, D. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31433-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31433-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31431-0

  • Online ISBN: 978-3-319-31433-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics