Skip to main content

Pathogenesis of Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Scleroderma

Abstract

The development of pulmonary arterial hypertension (PAH) represents a serious comorbidity in collagen vascular diseases. This complication is commonly observed in scleroderma (SSc) patients where the risk of developing PAH persists throughout the disease. Affecting up to 10 % of patients, SSc appears to act as a susceptibility factor in the development of PAH (Avouac J, Airo P, Meune C, Beretta L, Dieude P, Caramaschi P, et al. Prevalence of pulmonary hypertension in systemic sclerosis in European Caucasians and metaanalysis of 5 studies. J Rheumatol. 2010;37(11):2290–8. Nihtyanova SI, Schreiber BE, Ong VH, Rosenberg D, Moinzadeh P, Coghlan JG, et al. Prediction of pulmonary complications and long-term survival in systemic sclerosis. Arthritis Rheum. 2014;66(6):1625–35). While significant progress has been made in understanding the pathological mechanisms that contribute to the development and progression of heritable and idiopathic forms of PAH, the relative pathogenic mechanisms that contribute to the development of PAH in SSc patients remain less appreciated. Indeed SSc-PAH patients have a significantly poorer prognosis compared to other forms (Mathai SC, Hummers LK, Champion HC, Wigley FM, Zaiman A, Hassoun PM, et al. Survival in pulmonary hypertension associated with the scleroderma spectrum of diseases: impact of interstitial lung disease. Arthritis Rheum. 2009;60(2):569–77). Here we discuss the key pathological findings in PAH and fundamental pathobiological mechanisms implicated in the development and progression of PAH, particularly in SSc patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–41.

    Article  PubMed  Google Scholar 

  2. Zaiman A, Fijalkowska I, Hassoun PM, Tuder RM. One hundred years of research in the pathogenesis of pulmonary hypertension. Am J Respir Cell Mol Biol. 2005;33(5):425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fishman AP. A century of primary pulmonary hypertension. In: Rubin LJ, Rich S, editors. Primary pulmonary hypertension. 1st ed. New York: Macel Decker; 1997. p. 1–17.

    Google Scholar 

  4. Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med. 2004;351(14):1425–36.

    Article  CAS  PubMed  Google Scholar 

  5. Shorr AF, Wainright JL, Cors CS, Lettieri CJ, Nathan SD. Pulmonary hypertension in patients with pulmonary fibrosis awaiting lung transplant. Eur Respir J. 2007;30(4):715–21.

    Article  CAS  PubMed  Google Scholar 

  6. Cuttica MJ, Kalhan R, Shlobin OA, Ahmad S, Gladwin M, Machado RF, et al. Categorization and impact of pulmonary hypertension in patients with advanced COPD. Respir Med. 2010;104(12):1877–82.

    Article  PubMed  Google Scholar 

  7. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S43–54.

    Article  PubMed  Google Scholar 

  8. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation. 2010;121(18):2045–66.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tuder RM, Stacher E, Robinson J, Kumar R, Graham BB. Pathology of pulmonary hypertension. Clin Chest Med. 2013;34(4):639–50.

    Article  PubMed  Google Scholar 

  10. Tuder RM, Archer SL, Dorfmuller P, Erzurum SC, Guignabert C, Michelakis E, et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tuder RM. How do we measure pathology in PAH (lung and RV) and what does it tell us about the disease. Drug Discov Today. 2014;19(8):1257–63.

    Article  PubMed  Google Scholar 

  12. Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL, Voelkel NF, et al. Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell specific markers: evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol. 1999;155(2):411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation. 1958;18:533–47.

    Article  CAS  PubMed  Google Scholar 

  14. Wagenvoort CA. Plexogenic arteriopathy. Thorax. 1994;49(Suppl):S39–45.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tanaka Y, Schuster DP, Davis EC, Patterson GA, Botney MD. The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest. 1996;98(2):434–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon GG, Waltenberger J, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 2001;15(2):427–38.

    Article  CAS  PubMed  Google Scholar 

  17. Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, et al. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation. 2010;121:2747–54.

    Article  PubMed  Google Scholar 

  18. Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(3):261–72.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res. 2006;98(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  20. Tuder RM. Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med. 2009;30(4):376–85.

    Article  PubMed  Google Scholar 

  21. Chazova I, Loyd JE, Newman JH, Belenkov Y, Meyrick B. Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension. Am J Pathol. 1995;146(2):389–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol. 2015;308(3):L229–52.

    Article  CAS  PubMed  Google Scholar 

  23. Smith P, Heath D. Electron microscopy of the plexiform lesion. Thorax. 1979;34:177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wagenvoort CA, Wagenvoort N. Primary pulmonary hypertension. A pathologic study of the lung vessels in 156 clinically diagnosed cases. Circulation. 1970;42:1163–84.

    Article  Google Scholar 

  25. Tuder RM, Zaiman AL. Pathology of pulmonary vascular disease. In: Peacock A, Rubin LJ, editors. Pulmonary circulation. 2nd ed. London: Arnold; 2004. p. 25–32.

    Google Scholar 

  26. Nathan SD, Noble PW, Tuder RM. Idiopathic pulmonary fibrosis and pulmonary hypertension: connecting the dots. Am J Respir Crit Care Med. 2007;175(9):875–80.

    Article  PubMed  Google Scholar 

  27. Tuder RM, Chacon M, Alger LA, Wang J, Taraseviciene-Stewart L, Kasahara Y, et al. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol. 2001;195(3):367–74.

    Article  CAS  PubMed  Google Scholar 

  28. Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest. 1998;101(5):927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yeager ME, Halley GR, Golpon HA, Voelkel NF, Tuder RM. Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ Res. 2001;88(1):e8–11.

    Article  Google Scholar 

  30. Yi ES, Kim H, Ahn H, Strother J, Morris T, Masliah E, et al. Distribution of obstructive intimal lesions and their cellular phenotypes in chronic pulmonary hypertension. A morphometric and immunohistochemical study. Am J Respir Crit Care Med. 2000;162(4):1577–86.

    Article  CAS  PubMed  Google Scholar 

  31. Yamaki S, Wagenvoort CA. Plexogenic pulmonary arteriopathy: significance of medial thickness with respect to advanced pulmonary vascular lesions. Am J Pathol. 1981;105(1):70–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tuder RM, Lee SD, Cool CD. Histopathology of pulmonary hypertension. Chest. 1998;114(1 Suppl):1S–6.

    Article  CAS  PubMed  Google Scholar 

  33. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993;328(24):1732–9.

    Article  CAS  PubMed  Google Scholar 

  34. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995;333(4):214–21.

    Article  CAS  PubMed  Google Scholar 

  35. Voelkel NF, Cool CD, Lee SD, Wright L, Geraci MW, Tuder RM. Primary pulmonary hypertension between inflammation and cancer. Chest. 1999;114 Suppl 3:225S–30.

    Google Scholar 

  36. Rai PR, Cool CD, King JAC, Stevens T, Burns N, Winn RA, et al. The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178(6):558–64.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tuder RM, Radisavljevic Z, Shroyer KR, Polak JM, Voelkel NF. Monoclonal endothelial cells in appetite suppressant-associated pulmonary hypertension. Am J Respir Crit Care Med. 1998;158(6):1999–2001.

    Article  CAS  PubMed  Google Scholar 

  38. The International PPH Consortium, Lane KB, Machado RD, Pauciulo MW, Thompson JR, Philips III JA, et al. Heterozygous germline mutations in BMPR2 encoding a TGF-B receptor cause familiar pulmonary hypertension. Nat Genet. 2000;26(1):81–4.

    Article  CAS  Google Scholar 

  39. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, et al. Familial primary pulmonary hypertension (gene PPH1) Is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000;67(3):737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aldred MA, Comhair SA, Varella-Garcia M, Asosingh K, Xu W, Noon GP, et al. Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;182(9):1153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips III JA, Loyd JE, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet. 2000;26(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  42. Ma L, Chung WK. The genetic basis of pulmonary arterial hypertension. Hum Genet. 2014;133(5):471–9.

    Article  CAS  PubMed  Google Scholar 

  43. Austin ED, Loyd JE. The genetics of pulmonary arterial hypertension. Circ Res. 2014;115(1):189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med. 2001;345(5):325–34.

    Article  CAS  PubMed  Google Scholar 

  45. Broen JC, Bossini-Castillo L, van Bon L, Vonk MC, Knaapen H, Beretta L, et al. A rare polymorphism in the gene for toll-like receptor 2 is associated with systemic sclerosis phenotype and increases the production of inflammatory mediators. Arthritis Rheum. 2012;64(1):264–71.

    Article  CAS  PubMed  Google Scholar 

  46. Dieude P, Guedj M, Wipff J, Ruiz B, Riemekasten G, Matucci-Cerinic M, et al. Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann Rheum Dis. 2010;69(11):1958–64.

    Article  CAS  PubMed  Google Scholar 

  47. Manetti M, Allanore Y, Revillod L, Fatini C, Guiducci S, Cuomo G, et al. A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. Arthritis Rheum. 2011;63(1):247–56.

    Article  CAS  PubMed  Google Scholar 

  48. Austin ED, Ma L, LeDuc C, Berman RE, Borczuk A, Phillips III JA, et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet. 2012;5(3):336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koumakis E, Wipff J, Dieude P, Ruiz B, Bouaziz M, Revillod L, et al. TGFbeta receptor gene variants in systemic sclerosis-related pulmonary arterial hypertension: results from a multicentre EUSTAR study of European Caucasian patients. Ann Rheum Dis. 2012;71(11):1900–3.

    Article  CAS  PubMed  Google Scholar 

  50. Sitbon O, Morrell N. Pathways in pulmonary arterial hypertension: the future is here. Eur Respir Rev. 2012;21(126):321–7.

    Article  PubMed  Google Scholar 

  51. Guignabert C, Tu L, Girerd B, Ricard N, Huertas A, Montani D, et al. New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication. Chest. 2015;147(2):529–37.

    Article  PubMed  Google Scholar 

  52. Baliga RS, MacAllister RJ, Hobbs AJ. New perspectives for the treatment of pulmonary hypertension. Br J Pharmacol. 2011;163(1):125–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas M, Ciuclan L, Hussey MJ, Press NJ. Targeting the serotonin pathway for the treatment of pulmonary arterial hypertension. Pharmacol Ther. 2013;138(3):409–17.

    Article  CAS  PubMed  Google Scholar 

  54. Varga J, Whitfield ML. Transforming growth factor-beta in systemic sclerosis (scleroderma). Front Biosci (Schol Ed). 2009;1:226–35.

    Article  Google Scholar 

  55. Budd DC, Holmes AM. Targeting TGFbeta superfamily ligand accessory proteins as novel therapeutics for chronic lung disorders. Pharmacol Ther. 2012;135(3):279–91.

    Article  CAS  PubMed  Google Scholar 

  56. Upton PD, Morrell NW. The transforming growth factor-beta-bone morphogenetic protein type signaling pathway in pulmonary vascular homeostasis and disease. Exp Physiol. 2013;98(8):1262–6.

    Article  CAS  PubMed  Google Scholar 

  57. Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, et al. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary artery hypertension. Am J Pathol. 2015;185(7):1850–8.

    Google Scholar 

  58. Thomas M, Docx C, Holmes AM, Beach S, Duggan N, England K, et al. Activin-like kinase 5 (ALK5) mediates abnormal proliferation of vascular smooth muscle cells from patients with familial pulmonary arterial hypertension and is involved in the progression of experimental pulmonary arterial hypertension induced by monocrotaline. Am J Pathol. 2009;174(2):380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N, Sheares KK, et al. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation. 2001;104(7):790–5.

    Article  CAS  PubMed  Google Scholar 

  60. Cai J, Pardali E, Sanchez-Duffhues G, ten Dijke P. BMP signaling in vascular diseases. FEBS Lett. 2012;586(14):1993–2002.

    Article  CAS  PubMed  Google Scholar 

  61. Upton PD, Davies RJ, Tajsic T, Morrell NW. Transforming growth factor-beta(1) represses bone morphogenetic protein-mediated Smad signaling in pulmonary artery smooth muscle cells via Smad3. Am J Respir Cell Mol Biol. 2013;49(6):1135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Davies RJ, Holmes AM, Deighton J, Long L, Yang X, Barker L, et al. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-beta in pulmonary artery smooth muscle cells: role of proinflammatory cytokines. Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Burton VJ, Ciuclan LI, Holmes AM, Rodman DM, Walker C, Budd DC. Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function. Blood. 2011;117(1):333–41.

    Article  CAS  PubMed  Google Scholar 

  64. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim DK, et al. Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation. 2009;119(4):566–76.

    Article  CAS  PubMed  Google Scholar 

  65. Wellbrock J, Harbaum L, Stamm H, Hennigs JK, Schulz B, Klose H, et al. Intrinsic BMP antagonist gremlin-1 as a novel circulating marker in pulmonary arterial hypertension. Lung. 2015;193(4):567–70.

    Google Scholar 

  66. Cahill E, Costello CM, Rowan SC, Harkin S, Howell K, Leonard MO, et al. Gremlin plays a key role in the pathogenesis of pulmonary hypertension. Circulation. 2012;125(7):920–30.

    Article  CAS  PubMed  Google Scholar 

  67. Derrett-Smith EC, Dooley A, Gilbane AJ, Trinder SL, Khan K, Baliga R, et al. Endothelial injury in a transforming growth factor beta-dependent mouse model of scleroderma induces pulmonary arterial hypertension. Arthritis Rheum. 2013;65(11):2928–39.

    Article  CAS  PubMed  Google Scholar 

  68. Gilbane AJ, Derrett-Smith E, Trinder SL, Good RB, Pearce A, Denton CP, et al. Impaired bone morphogenetic protein receptor II signaling in a transforming growth factor-beta-dependent mouse model of pulmonary hypertension and in systemic sclerosis. Am J Respir Crit Care Med. 2015;191(6):665–77.

    Article  CAS  PubMed  Google Scholar 

  69. Ma W, Han W, Greer PA, Tuder RM, Toque HA, Wang KK, et al. Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease. J Clin Invest. 2011;121(11):4548–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Graham BB, Chabon J, Gebreab L, Poole J, Debella E, Davis L, et al. Transforming growth factor-beta signaling promotes pulmonary hypertension caused by Schistosoma mansoni. Circulation. 2013;128(12):1354–64.

    Article  CAS  PubMed  Google Scholar 

  71. Reynolds AM, Holmes MD, Danilov SM, Reynolds PN. Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur Respir J. 2012;39(2):329–43.

    Article  CAS  PubMed  Google Scholar 

  72. Long L, Ormiston ML, Yang X, Southwood M, Graf S, Machado RD, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015;21(7):777–85.

    Google Scholar 

  73. MacLean MR, Herve P, Eddahibi S, Adnot S. 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br J Pharmacol. 2000;131(2):161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Welsh DJ, Harnett M, MacLean M, Peacock AJ. Proliferation and signaling in fibroblasts: role of 5-hydroxytryptamine2A receptor and transporter. Am J Respir Crit Care Med. 2004;170(3):252–9.

    Article  PubMed  Google Scholar 

  75. Lee SL, Wang WW, Lanzillo JJ, Fanburg BL. Serotonin produces both hyperplasia and hypertrophy of bovine pulmonary artery smooth muscle cells in culture. Am J Physiol. 1994;266(1 Pt 1):L46–52.

    CAS  PubMed  Google Scholar 

  76. Ren W, Watts SW, Fanburg BL. Serotonin transporter interacts with the PDGFbeta receptor in PDGF-BB-induced signaling and mitogenesis in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2011;300(3):L486–97.

    Article  CAS  PubMed  Google Scholar 

  77. Dees C, Akhmetshina A, Zerr P, Reich N, Palumbo K, Horn A, et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med. 2011;208(5):961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Long L, MacLean MR, Jeffery TK, Morecroft I, Yang X, Rudarakanchana N, et al. Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res. 2006;98(6):818–27.

    Article  CAS  PubMed  Google Scholar 

  79. Launay JM, Herve P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, et al. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med. 2002;8(10):1129–35.

    Article  CAS  PubMed  Google Scholar 

  80. Seibold JR, Molony RR, Turkevich D, Ruddy MC, Kostis JB. Acute hemodynamic effects of ketanserin in pulmonary hypertension secondary to systemic sclerosis. J Rheumatol. 1987;14(3):519–24.

    CAS  PubMed  Google Scholar 

  81. Antoniu SA. Targeting PDGF pathway in pulmonary arterial hypertension. Expert Opin Ther Targets. 2012;16(11):1055–63.

    Article  CAS  PubMed  Google Scholar 

  82. Perros F, Montani D, Dorfmuller P, Durand-Gasselin I, Tcherakian C, Le PJ, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  83. Selimovic N, Bergh CH, Andersson B, Sakiniene E, Carlsten H, Rundqvist B. Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension. Eur Respir J. 2009;34(3):662–8.

    Article  CAS  PubMed  Google Scholar 

  84. Riccieri V, Stefanantoni K, Vasile M, Macri V, Sciarra I, Iannace N, et al. Abnormal plasma levels of different angiogenic molecules are associated with different clinical manifestations in patients with systemic sclerosis. Clin Exp Rheumatol. 2011;29(2 Suppl 65):S46–52.

    PubMed  Google Scholar 

  85. Overbeek MJ, Boonstra A, Voskuyl AE, Vonk MC, Vonk-Noordegraaf A, van Berkel MP, et al. Platelet-derived growth factor receptor-beta and epidermal growth factor receptor in pulmonary vasculature of systemic sclerosis-associated pulmonary arterial hypertension versus idiopathic pulmonary arterial hypertension and pulmonary veno-occlusive disease: a case-control study. Arthritis Res Ther. 2011;13(2):R61.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, Mancini M, et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med. 2006;354(25):2667–76.

    Article  CAS  PubMed  Google Scholar 

  87. Tanaka S, Suto A, Ikeda K, Sanayama Y, Nakagomi D, Iwamoto T, et al. Alteration of circulating miRNAs in SSc: miR-30b regulates the expression of PDGF receptor beta. Rheumatology (Oxford). 2013;52(11):1963–72.

    Article  CAS  Google Scholar 

  88. Takemura H, Suzuki H, Fujisawa H, Yuhara T, Akama T, Yamane K, et al. Enhanced interleukin 6 production by cultured fibroblasts from patients with systemic sclerosis in response to platelet derived growth factor. J Rheumatol. 1998;25(8):1534–9.

    CAS  PubMed  Google Scholar 

  89. Ciuclan L, Hussey MJ, Burton V, Good R, Duggan N, Beach S, et al. Imatinib attenuates hypoxia-induced pulmonary arterial hypertension pathology via reduction in 5-hydroxytryptamine through inhibition of tryptophan hydroxylase 1 expression. Am J Respir Crit Care Med. 2013;187(1):78–89.

    Article  CAS  PubMed  Google Scholar 

  90. Hatano M, Yao A, Shiga T, Kinugawa K, Hirata Y, Nagai R. Imatinib mesylate has the potential to exert its efficacy by down-regulating the plasma concentration of platelet-derived growth factor in patients with pulmonary arterial hypertension. Int Heart J. 2010;51(4):272–6.

    Article  CAS  PubMed  Google Scholar 

  91. Halka AT, Turner NJ, Carter A, Ghosh J, Murphy MO, Kirton JP, et al. The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovasc Pathol. 2008;17(2):98–102.

    Article  CAS  PubMed  Google Scholar 

  92. Nakasu S, Fujisawa H, Minagawa T. Purification of characterization of gene 8 product of bacteriophage T3. Virology. 1985;143(2):422–34.

    Article  CAS  PubMed  Google Scholar 

  93. Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D. Extra-cellular matrix in vascular networks. Cell Prolif. 2004;37(3):207–20.

    Article  CAS  PubMed  Google Scholar 

  94. Chelladurai P, Seeger W, Pullamsetti SS. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. Eur Respir J. 2012;40(3):766–82.

    Article  CAS  PubMed  Google Scholar 

  95. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73.

    Article  CAS  PubMed  Google Scholar 

  96. Denton CP, Black CM, Abraham DJ. Mechanisms and consequences of fibrosis in systemic sclerosis. Nat Clin Pract Rheumatol. 2006;2(3):134–44.

    Article  PubMed  Google Scholar 

  97. Safdar Z, Tamez E, Chan W, Arya B, Ge Y, Deswal A, et al. Circulating collagen biomarkers as indicators of disease severity in pulmonary arterial hypertension. JACC Heart Fail. 2014;2(4):412–21.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang Z, Lakes RS, Golob M, Eickhoff JC, Chesler NC. Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PLoS ONE. 2013;8(11), e78569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Golledge J, Clancy P, Maguire J, Lincz L, Koblar S. The role of tenascin C in cardiovascular disease. Cardiovasc Res. 2011;92(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  100. Wei L, Warburton RR, Preston IR, Roberts KE, Comhair SA, Erzurum SC, et al. Serotonylated fibronectin is elevated in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2012;302(12):L1273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsui K, Takano Y, Yu ZX, Hi JE, Stetler-Stevenson WG, Travis WD, et al. Immunohistochemical study of endothelin-1 and matrix metalloproteinases in plexogenic pulmonary arteriopathy. Pathol Res Pract. 2002;198(6):403–12.

    Article  CAS  PubMed  Google Scholar 

  102. Vieillard-Baron A, Frisdal E, Raffestin B, Baker AH, Eddahibi S, Adnot S, et al. Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer limits monocrotaline-induced pulmonary vascular remodeling in rats. Hum Gene Ther. 2003;14(9):861–9.

    Article  CAS  PubMed  Google Scholar 

  103. Kim GH, Ryan JJ, Marsboom G, Archer SL. Epigenetic mechanisms of pulmonary hypertension. Pulm Circ. 2011;1(3):347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation. 2012;126(4):455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med. 2013;17(10):1291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation. 2010;121(24):2661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Meloche J, Pflieger A, Vaillancourt M, Graydon C, Provencher S, Bonnet S. miRNAs in PAH: biomarker, therapeutic target or both? Drug Discov Today. 2014;19(8):1264–9.

    Article  CAS  PubMed  Google Scholar 

  108. Zhou G, Chen T, Raj JU. MicroRNAs in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2015;52(2):139–51.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wallace E, Morrell NW, Yang XD, Long L, Stevens H, Nilsen M, et al. A sex-specific microRNA-96/5-hydroxytryptamine 1B axis influences development of pulmonary hypertension. Am J Respir Crit Care Med. 2015;191(12):1432–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kang BY, Park KK, Kleinhenz JM, Murphy TC, Green DE, Bijli KM, et al. PPARgamma activation reduces hypoxia-induced endothelin-1 expression through upregulation of miR-98. Am J Respir Cell Mol Biol. 2015;54(1):136–46.

    Google Scholar 

  111. Gou D, Ramchandran R, Peng X, Yao L, Kang K, Sarkar J, et al. miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am J Physiol Lung Cell Mol Physiol. 2012;303(8):L682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, et al. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med. 2013;19(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  113. Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, et al. Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Circulation. 2015;131(2):190–9.

    Article  PubMed  Google Scholar 

  114. Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 2011;208:535–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shimoda LA, Semenza GL. HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med. 2011;183(2):152–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. J Clin Invest. 1999;103(5):691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brusselmans K, Compernolle V, Tjwa M, Wiesener MS, Maxwell PH, Collen D, et al. Heterozygous deficiency of hypoxia-inducible factor-2a protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest. 2003;111(10):1519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Comhair SA, Xu W, Mavrakis L, Aldred MA, Asosingh K, Erzurum SC. Human primary lung endothelial cells in culture. Am J Respir Cell Mol Biol. 2012;46(6):723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Masri FA, Xu W, Comhair SA, Asosingh K, Koo M, Vasanji A, et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L548–54.

    Article  CAS  PubMed  Google Scholar 

  120. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A. 2007;104(4):1342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, et al. An abnormal mitochondrial-hypoxia inducible factor-1 alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats – similarities to human pulmonary arterial hypertension. Circulation. 2006;113(22):2630–41.

    Article  CAS  PubMed  Google Scholar 

  122. Tuder RM, Davis LA, Graham BB. Targeting energetic metabolism: a new frontier in the pathogenesis and treatment of pulmonary hypertension. Am J Respir Crit Care Med. 2012;185(3):260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JGN, Weir EK. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1a}-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol. 2008;294(2):H570–8.

    Article  CAS  PubMed  Google Scholar 

  124. Sutendra G, Michelakis ED. The metabolic basis of pulmonary arterial hypertension. Cell Metab. 2014;19(4):558–73.

    Article  CAS  PubMed  Google Scholar 

  125. Stenmark KR, Tuder RM, El Kasmi KC. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. J Appl Physiol (1985). 2015; In Press:jap.

    Google Scholar 

  126. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J. 2005;19(9):1178–80.

    CAS  PubMed  Google Scholar 

  127. McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, et al. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest. 2005;115(6):1479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. El Kasmi KC, Pugliese SC, Riddle SR, Poth JM, Anderson AL, Frid MG, et al. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J Immunol. 2014;193(2):597–609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell. 2015;57(1):95–107.

    Article  CAS  PubMed  Google Scholar 

  130. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–3.

    Article  CAS  PubMed  Google Scholar 

  131. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38(4):633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510(7504):298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 2015;520(7546):192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao L, Ashek A, Wang L, Fang W, Dabral S, Dubois O, et al. Heterogeneity in lung 18FDG uptake in PAH: potential of dynamic 18FDG-PET with kinetic analysis as a bridging biomarker for pulmonary remodeling targeted treatments. Circulation. 2013;128(11):1214–24.

    Google Scholar 

  136. Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(6):670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res. 2004;95(8):830–40.

    Article  CAS  PubMed  Google Scholar 

  138. Caslin AW, Heath D, Madden B, Yacoub M, Gosney JR, Smith P. The histopathology of 36 cases of plexogenic pulmonary arteriopathy. Histopathology. 1990;16(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  139. Tuder RM, Groves BM, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol. 1994;144(2):275–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Savai R, Pullamsetti SS, Kolbe J, Bieniek E, Voswinckel R, Fink L, et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(9):897–908.

    Article  CAS  PubMed  Google Scholar 

  141. Voelkel NF, Tuder RM, Bridges J, Arend WP. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. Am J Respir Cell Mol Biol. 1994;11(6):664–75.

    Article  CAS  PubMed  Google Scholar 

  142. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151(5):1628–31.

    Article  CAS  PubMed  Google Scholar 

  143. Minamino T, Christou H, Hsieh CM, Li Y, Dhawan V, Abraham, et al. Targeted expression of hemeoxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A. 2001;98(15):8798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Farkas D, Alhussaini AA, Kraskauskas D, Kraskauskiene V, Cool CD, Nicolls MR, et al. Nuclear factor kappaB inhibition reduces lung vascular lumen obliteration in severe pulmonary hypertension in rats. Am J Respir Cell Mol Biol. 2014;51(3):413–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li L, Wei C, Kim IK, Janssen-Heininger Y, Gupta S. Inhibition of nuclear factor-kappaB in the lungs prevents monocrotaline-induced pulmonary hypertension in mice. Hypertension. 2014;63(6):1260–9.

    Article  CAS  PubMed  Google Scholar 

  147. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. PNAS. 2007;104(27):11418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Paulin R, Sutendra G, Gurtu V, Dromparis P, Haromy A, Provencher S, et al. A miR-208-Mef2 axis drives the decompensation of right ventricular function in pulmonary hypertension. Circ Res. 2015;116(1):56–69.

    Article  CAS  PubMed  Google Scholar 

  149. Bussone G, Tamby MC, Calzas C, Kherbeck N, Sahbatou Y, Sanson C, et al. IgG from patients with pulmonary arterial hypertension and/or systemic sclerosis binds to vascular smooth muscle cells and induces cell contraction. Ann Rheum Dis. 2012;71(4):596–605.

    Article  CAS  PubMed  Google Scholar 

  150. Terrier B, Tamby MC, Camoin L, Guilpain P, Broussard C, Bussone G, et al. Identification of target antigens of antifibroblast antibodies in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177(10):1128–34.

    Article  CAS  PubMed  Google Scholar 

  151. Perros F, Dorfmuller P, Montani D, Hammad H, Waelput W, Girerd B, et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(3):311–21.

    Article  PubMed  Google Scholar 

  152. Colvin KL, Cripe PJ, Ivy DD, Stenmark KR, Yeager ME. Bronchus-associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies. Am J Respir Crit Care Med. 2013;188(9):1126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Graham BB, Bandeira AP, Morrell NW, Butrous G, Tuder RM. Schistosomiasis-associated pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest. 2010;137(6 Suppl):20S–9.

    Article  PubMed  Google Scholar 

  154. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Crosby A, Jones FM, Southwood M, Stewart S, Schermuly R, Butrous G, et al. Pulmonary vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med. 2010;181(3):279–88.

    Article  CAS  PubMed  Google Scholar 

  156. Graham BB, Mentink-Kane MM, El-Haddad H, Purnell S, Zhang L, Zaiman A, et al. Schistosomiasis-induced experimental pulmonary hypertension: role of interleukin-13 signaling. Am J Pathol. 2010;177(3):1549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920–7.

    Article  CAS  PubMed  Google Scholar 

  158. Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res. 2009;104(2):236–44.

    Article  CAS  PubMed  Google Scholar 

  159. Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, et al. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res. 2009;10:6.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Maxova H, Herget J, Vizek M. Lung mast cells and hypoxic pulmonary hypertension. Physiol Res. 2012;61(1):1–11.

    CAS  PubMed  Google Scholar 

  161. Montani D, Perros F, Gambaryan N, Girerd B, Dorfmuller P, Price LC, et al. C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;184(1):116–23.

    Article  PubMed  Google Scholar 

  162. Hoffmann J, Yin J, Kukucka M, Yin N, Saarikko I, Sterner-Kock A, et al. Mast cells promote lung vascular remodelling in pulmonary hypertension. Eur Respir J. 2011;37(6):1400–10.

    Article  CAS  PubMed  Google Scholar 

  163. Novotny T, Krejci J, Malikova J, Svehlik V, Wasserbauer R, Uhlik J, et al. Mast cell stabilization with sodium cromoglycate modulates pulmonary vessel wall remodeling during four-day hypoxia in rats. Exp Lung Res. 2015;41(5):283–92.

    Article  CAS  PubMed  Google Scholar 

  164. Kay JM, Waymire JC, Grover RF. Lung mast cell hyperplasia and pulmonary histamine-forming capacity in hypoxic rats. Am J Physiol. 1974;226(1):178–84.

    CAS  PubMed  Google Scholar 

  165. Galie N, Simonneau G. The Fifth World Symposium on pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D1–3.

    Article  PubMed  Google Scholar 

  166. Nickel NP, Spiekerkoetter E, Gu M, Li CG, Li H, Kaschwich M, et al. Elafin reverses pulmonary hypertension via caveolin-1-dependent bone morphogenetic protein signaling. Am J Respir Crit Care Med. 2015;191(11):1273–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013;123(8):3600–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Saker M, Lipskaia L, Marcos E, Abid S, Parpaleix A, Houssaini A et al. Osteopontin, a Key Mediator Expressed by Senescent Pulmonary Vascular Cells in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2016;36(9):1879–90.

    Google Scholar 

  169. Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, et al. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol 2015;185(7):1850–8.

    Google Scholar 

  170. Hoffmann J, Wilhelm J, Marsh LM, Ghanim B, Klepetko W, Kovacs G, et al. Distinct differences in gene expression patterns in pulmonary arteries of patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis with pulmonary hypertension. Am J Respir Crit Care Med 2014;190(1):98–111.

    Google Scholar 

  171. Chelladurai P, Seeger W, Pullamsetti SS. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. Eur Respir J 2012;40(3):766–82.

    Google Scholar 

  172. Wei L, Warburton RR, Preston IR, Roberts KE, Comhair SA, Erzurum SC, et al. Serotonylated fibronectin is elevated in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012 15;302(12):L1273–L1279.

    Google Scholar 

  173. Schumann C, Lepper PM, Frank H, Schneiderbauer R, Wibmer T, Kropf C, et al. Circulating biomarkers of tissue remodelling in pulmonary hypertension. Biomarkers 2010;15(6):523–32.

    Google Scholar 

  174. Geraci MW, Moore M, Gesell T, Yeager ME, Alger L, Golpon H, et al. Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ Res 2001;88(6):555–62.

    Google Scholar 

Download references

Acknowledgments

RMT was supported by; AH was supported by the Arthritis Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin M. Tuder MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuder, R.M., Ponticos, M., Holmes, A. (2017). Pathogenesis of Pulmonary Arterial Hypertension. In: Varga, J., Denton, C., Wigley, F., Allanore, Y., Kuwana, M. (eds) Scleroderma. Springer, Cham. https://doi.org/10.1007/978-3-319-31407-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31407-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31405-1

  • Online ISBN: 978-3-319-31407-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics