Advertisement

Green’s Function of a General PT-Symmetric Non-Hermitian Non-central Potential

  • Brijesh Kumar Mourya
  • Bhabani Prasad MandalEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 184)

Abstract

We study the path integral solution of a system of particle moving in certain class of PT symmetric non-Hermitian and non-central potential. The Hamiltonian of the system is converted to a separable Hamiltonian of Liouville type in parabolic coordinates and is further mapped into a Hamiltonian corresponding to two 2-dimensional simple harmonic oscillators (SHOs). Thus the explicit Green’s functions for a general non-central PT symmetric non hermitian potential are calculated in terms of that of 2d SHOs. The entire spectrum for this three dimensional system is shown to be always real leading to the fact that the system remains in unbroken PT phase all the time.

Keywords

Annihilation Operator Canonical Transformation Path Integral Formulation Liouville Type Simple Harmonic Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

BPM acknowledge the financial support from the Department of Science and Technology (DST), Govt. of India under SERC project sanction grant No. SR/S2/HEP-0009/2012.

References

  1. 1.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integral (McGraw Hill, New York, 1965)Google Scholar
  2. 2.
    See for example, A. Das, Field Theory: A Path Integral Approach (World Scientific)Google Scholar
  3. 3.
    C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998); A. Mostafazadeh, Int. J. Geom. Meth. Mod. Phys. 7, 1191 (2010) and references therein; C.M. Bender. Rep. Prog. Phys. 70, 947 (2007). and references thereinGoogle Scholar
  4. 4.
    G. Levai, J. Phys. A 41, 244015 (2008); C.M. Bender, G.V. Dunne, P.N. Meisinger, M. Simsek Phys. Lett. A 281, 311–316 (2001). C.M. Bender, David J. Weir J. Phys. A 45, 425303 (2012); B.P. Mandal, B.K. Mourya, R.K. Yadav (BHU), Phys. Lett. A 377, 1043 (2013); B.P. Mandal, B.K. Mourya, K, Ali, A. Ghatak, arXiv. 1509.07500 (Press, Ann. of Phys. (2015)); M. Znojil J. Phys.A 36(2003) 7825; C. M. Bender, G. V. Dunne, P. N. Meisinger, M. Simsek Phys. Lett. A 281 (2001)311–316
  5. 5.
    C.E. Ruter, K.G. Makris, R. El-Ganainy, D.N. Christodulides, M. Segev, D. Kip, Nat. (Lond.) Phys. 6, 192 (2010); A. Guo, G.J. Salamo, Phys. Rev. Lett. 103, 093902 (2009); C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999); C.T. West, T. Kottos, T. Prosen, Phys. Rev. Lett. 104, 054102 (2010); A. Nanayakkara. Phys. Lett. A 304, 67 (2002)Google Scholar
  6. 6.
    Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodou lides, Phys. Rev. Lett. 100, 030402 (2008); M.V. Berry, Czech. J. Phys. 54, 1039 (2004); W.D. Heiss, Phys. Rep. 242, 443 (1994)Google Scholar
  7. 7.
    C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. D 70, 025001 (2004). C.M. Bender, D.C. Brody, J. Caldeira, B.K. Meister, arXiv 1011.1871 (2010). S. Longhi Phys. Rev. B 80, 165125 (2009). B.F. Samsonov J. Phys. A 43, 402006 (2010); Math. J. Phys. A: Math. Gen. 38, L571 (2005)Google Scholar
  8. 8.
    B. Basu-Mallick, B.P. Mandal, Phys. Lett. A 284, 231 (2001); B. Basu-Mallick, T. Bhattacharyya, B.P. Mandal. Mod. Phys. Lett. A 20, 543 (2004)Google Scholar
  9. 9.
    A. Ghatak, R.D. Ray, Mandal, B.P. Mandal, Ann. Phys. 336, 540 (2013); A. Ghatak, J.A. Nathan, B.P. Mandal, Z. Ahmed, J. Phys. A: Math. Theor. 45, 465305 (2012); A. Mostafazadeh, Phys. Rev. A 87, 012103 (2013); L. Deak, T. Fulop Ann. of Phys. 327, 1050 (2012); J.N. Joglekar, C. Thompson, D.D. Scott, G. Vemuri, Eur. Phys. J. Appl. Phys. 63, 30001 (2013); M. Hasan, A. Ghatak, B.P. Mandal, Ann. Phys. 344, 17 (2014); A. Ghatak, B.P. Mandal, J. Phys. A: Math. Theor. 45, 355301 (2012); S. Longhi, J. Phys. A: Math. Theor. 44, 485302 (2011)Google Scholar
  10. 10.
    B.P. Mandal, S.S. Mahajan, Comm. Theor. Phys. 64, 425(2015) ; S. Dey, A. Fring, Phys. Rev. A 88, 022116 (2013); C.M. Bender, D.W. Hook, P.N. Meisinger, Q. Wang, Phys. Rev. Lett. 104, 061601 (2010); C.M. Bender, D.W. Hook, K.S. Kooner, J. Phys. A 43, 165201, (2010)Google Scholar
  11. 11.
    A. Khare, B.P. Mandal, Phys. Lett. A272, 53 (2000); B.P. Mandal, S. Gupta, Mod. Phys. Lett. A 25, 1723 (2010); B.P. Mandal, Mod. Phys. Lett. A 20, 655 (2005); B.P. Mandal, A. Ghatak, J. Phys. A: Math. Theor. 45, 444022 (2012); M. Znojil, Ann. Phys. 361, 226 (2015)Google Scholar
  12. 12.
    K. Fujikawa, Nucl. Phys. B 484, 495 (1997)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B.P. Mandal, Int. J. Mod. Phys. A 15, 1225 (2000)ADSGoogle Scholar
  14. 14.
    H. Hartmann, Theor. Chim. Acta. 24, 201 (1972)CrossRefGoogle Scholar
  15. 15.
    M. Kibler, C. Campigotto, Int. J. Quantum Chem. 45, 209 (1993)CrossRefGoogle Scholar
  16. 16.
    L. Chetouani, L. Guechi, T.F. Hammann, J. Math. Phys. 33, 3410 (1992)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    L.H. Duru, H. Kleinert, Phys. Lett. B 84, 185 (1979)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Kustaanheimo, E. Stiefel, J. Reine Angew. Math. 218, 204 (1965)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations