Skip to main content

Spontaneous Breakdown of a PT-Symmetry in the Liouvillian Dynamics at a Non-Hermitian Degeneracy Point

  • Conference paper
  • First Online:
Non-Hermitian Hamiltonians in Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 184))

Abstract

We consider the prevalent phenomenon that a pair of eigenvalues of the Liouville-von Neumann operator (Liouvillian) changes from pure imaginary to complex values with a common imaginary part for resonance states in an extended function space outside the Hilbert space. Such a transition point is an exceptional point, where non-Hermitian degeneracy occurs and both the pairs of eigenvalues and of eigenvectors coalesce. The transition can be attributed to a spontaneous breakdown of a parity and time-reversal (PT)-symmetry. This PT-symmetry in the Liouvillian dynamics results from the microscopic dynamics based on the fundamental physical laws. The kinetic equation of the Boltzmann type for a particle weakly coupled with a bath consists of the collision term, which is similar to a Hermitian operator and has even parity, and the flow term, which is anti-Hermitian and has odd parity. As a result of the competition between the two terms, a pair of PT-symmetric eigenstates of the effective Liouvillian converts to a PT-symmetry related pair as the flow term becomes more dominant than the collision term beyond an exceptional point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PT-symmetry is a case of pseudo-Hermiticity [11, 14, 16], which is equivalent to an antilinear symmetry.

  2. 2.

    Every finite-dimensional matrix can be similarly transformed into this form, because every finite-dimensional matrix is similar to a complex symmetric matrix [18].

  3. 3.

    The inner product of the linear operators A and B in the wave function space as vectors in the Liouville space is defined by \(\langle \!\langle A|B\rangle \!\rangle \equiv \mathrm {Tr}\left( A^\dagger B\right) \).

  4. 4.

    Detailed analysis on the validity of the Boltzmann approximation will be given elsewhere [22].

  5. 5.

    Nondegeneracy of zero eigenvalue of the collision term follows from Perron-Frobenius theorem [33], if the matrix elements of the collision operator are non-vanishing between any two adjacent momenta along the chain (60).

References

  1. L.P. Kadanoff, J. Swift, Phys. Rev. 165, 310–322 (1968)

    Article  ADS  Google Scholar 

  2. N. Hatano, D.R. Nelson, Phys. Rev. Lett. 77, 570–573 (1996)

    Article  ADS  Google Scholar 

  3. N. Hatano, Phys. A 254, 317–331 (1998). and references therein

    Article  MathSciNet  Google Scholar 

  4. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, 2011)

    Google Scholar 

  5. G. Bhamathi, E.C.G. Sudarshan, Int. J. Mod. Phys. B 13 and 14, 1531–1544 (1996)

    Google Scholar 

  6. M.V. Berry, Czech. J. Phys. 54, 1039–1047 (2004)

    Article  ADS  Google Scholar 

  7. W.D. Heiss, Czech. J. Phys. 54, 1091–1099 (2004)

    Article  ADS  Google Scholar 

  8. T. Kato, Perturbation Theory for Linear Operators, 2nd edn. (Springer, 1976)

    Google Scholar 

  9. N. Moiseyev, S. Friedland, Phys. Rev. A 22, 618–624 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. C.M. Bender, Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  ADS  Google Scholar 

  11. A. Mostafazadeh, Int. J. Geom. Meth. Mod. Phys. 7, 1191–1306 (2010)

    Article  MathSciNet  Google Scholar 

  12. R. Balescu, Statistical Mechanics of Charged Particles (John Wiley & Sons, 1963)

    Google Scholar 

  13. S. Klaiman, U. Günther, N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Klaiman, L.S. Cederbaum, Phys. Rev. A 78, 062113 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Amore, F.M. Fernández, J. Garcia, Ann. Phys. 350, 533–548 (2014)

    Article  ADS  Google Scholar 

  16. A. Mostafazadeh, J. Math. Phys. 43, 205–214, 2814–2816, 3944–3951 (2002)

    Google Scholar 

  17. K. Hashimoto et al., Prog. Theor. Exp. Phys. 2015, 023A02 (2015)

    Google Scholar 

  18. R. Santra, L.S. Cederbaum, Phys. Rep. 368, 1–117 (2002)

    Article  ADS  Google Scholar 

  19. P.-O. Löwdin, J. Math. Phys. 6, 1341–1353 (1963)

    Article  Google Scholar 

  20. T. Petrosky, I. Prigogine, Adv. Chem. Phys. 99, 1–120 (1997)

    MathSciNet  Google Scholar 

  21. T. Petrosky, Prog. Theor. Phys. 123, 395–420 (2010)

    Article  ADS  Google Scholar 

  22. K. Hashimoto, K. Kanki, S. Tanaka, T. Petrosky, Phys. Rev. E. 93, 022132 (2016)

    Google Scholar 

  23. A. Messiah, Quantum Mechanics (Wiley, 1958)

    Google Scholar 

  24. K. Hashimoto, K. Kanki, S. Tanaka, T. Petrosky, to be published in Prog. Theor. Exp. Phys. (2016)

    Google Scholar 

  25. Z.L. Zhang, Doctoral Dissertation, The University of Texas at Austin (1995)

    Google Scholar 

  26. A. Fring, J. Phys. A: Math. Theor. 48, 145301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. C.M. Bender, R.J. Kalveks, Int. J. Theor. Phys. 50, 955–962 (2011)

    Article  MathSciNet  Google Scholar 

  28. K. Kanki et al., Prog. Theor. Phys. Suppl. 184, 523–532 (2010)

    Article  ADS  Google Scholar 

  29. K. Kanki, S. Tanaka, T. Petrosky, J. Math. Phys. 52, 063301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Tanaka, K. Kanki, T. Petrosky, Phys. Rev. B 80, 094304 (2009)

    Article  ADS  Google Scholar 

  31. B.A. Tay, K. Kanki, S. Tanaka, T. Petrosky, J. Math. Phys. 52, 023302 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Petrosky et al., Prog. Theor. Phys. Suppl. 184, 457–465 (2010)

    Article  ADS  Google Scholar 

  33. R.K.P. Zia, B. Schmittmann, J. Stat. Mech. 2007, P07012 (2007)

    Article  Google Scholar 

  34. M. Am-Shallem, R. Kosloff, N. Moiseyev, New J. Phys. 17, 113036 (2015)

    Article  ADS  Google Scholar 

  35. G. Kimura, K. Yuasa, K. Imafuku, Phys. Rev. Lett. 89, 140403 (2002)

    Article  ADS  Google Scholar 

  36. T. Murase, Master Thesis, Osaka Prefecture University (2014)

    Google Scholar 

  37. H. Qian, M. Qian, Phys. Rev. Lett. 84, 2271–2274 (2000)

    Article  ADS  Google Scholar 

  38. C.M. Bender, M.V. Berry, A. Mandilara, J. Phys. A: Math. Gen. 35, L467–L471 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Kanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kanki, K., Hashimoto, K., Petrosky, T., Tanaka, S. (2016). Spontaneous Breakdown of a PT-Symmetry in the Liouvillian Dynamics at a Non-Hermitian Degeneracy Point. In: Bagarello, F., Passante, R., Trapani, C. (eds) Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-31356-6_19

Download citation

Publish with us

Policies and ethics