Non-unitary Evolution of Quantum Logics

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 184)

Abstract

In this work we present a dynamical approach to quantum logics. By changing the standard formalism of quantum mechanics to allow non-Hermitian operators as generators of time evolution, we address the question of how can logics evolve in time. In this way, we describe formally how a non-Boolean algebra may become a Boolean one under certain conditions. We present some simple models which illustrate this transition and develop a new quantum logical formalism based in complex spectral resolutions, a notion that we introduce in order to cope with the temporal aspect of the logical structure of quantum theory.

References

  1. 1.
    F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Ann. Phys. 213, 74–101 (1992)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    S. Klaiman, U. Günther, N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    O. Bendix, R. Fleischmann, T. Kottos, B. Shapiro, J. Phys. A: Math. Theor. 43, (2010)Google Scholar
  5. 5.
    M. Castagnino, S. Fortin, J. Phys. A 45, 444009 (2012)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Castagnino, R. Id, Betan, R. Laura, R.J. Liotta J. Phys. A: Math. Gen. 35, 6055–6074 (2002)Google Scholar
  7. 7.
    A. Bohm, Quantum Mechanics, Foundations and Applications (Springer, Berlin, 1986)CrossRefMATHGoogle Scholar
  8. 8.
    A. Bohm, N.L. Harshman, Quantum theory in the rigged Hilbert space—irreversibility from causality, in Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, Volume 504 of the series Lecture Notes in Physics, ed. by A. Bohm, H. Doebner, P. Kielanowski (Springer, Berlin, 2007), pp. 179–237Google Scholar
  9. 9.
    R. Weder, J. Math. Phys. 15, 20 (1974)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Sudarsham, C. Chiu, V. Gorini, Phys. Rev. D 18, 2914–2929 (1978)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Castagnino, R. Laura, Phys. Rev. A 56, 108–119 (1997)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Laura, M. Castagnino, Phys. Rev. A 57, 4140–4152 (1998)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Laura, M. Castagnino, Phys. Rev. E 57, 3948–3961 (1998)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Castagnino, S. Fortin, Mod. Phys. Lett. A 26, 2365–2373 (2011)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Castagnino, S. Fortin, J. Phys. A 45, 444009 (2012)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Lacki, The early axiomatizations of quantum mechanics: Jordan, von Neumann and the continuation of Hilbert’s program. Arch. Hist. Exact Sci. 54, 279–318 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    M. Rèdei, Quantum Logic in Algebraic Approach (Kluwer Academic Publishers, Dordrecht, 1998)CrossRefMATHGoogle Scholar
  18. 18.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis (Academic Press, New York, 1972)MATHGoogle Scholar
  19. 19.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1996)MATHGoogle Scholar
  20. 20.
    G. Birkhoff, J. von Neumann, Ann. Math. 37, 823–843 (1936)CrossRefGoogle Scholar
  21. 21.
    K. Engesser, D.M. Gabbay, D. Lehmann (eds.), in Handbook of Quantum Logic and Quantum Structures (Quantum Logic) (North-Holland, 2009)Google Scholar
  22. 22.
    Kalmbach, Orthomodular Lattices (Academic Press, San Diego, 1983)MATHGoogle Scholar
  23. 23.
    M.L. Dalla Chiara, R. Giuntini, R. Greechie, Reasoning in Quantum Theory (Kluwer Academic Publishers, Dordrecht, 2004)CrossRefMATHGoogle Scholar
  24. 24.
    C. Piron, Foundations of Quantum Physics (Addison-Wesley, Cambridge, 1976)CrossRefMATHGoogle Scholar
  25. 25.
    V. Varadarajan, Geometry of Quantum Theory I (Princeton, van Nostrand, 1968)CrossRefMATHGoogle Scholar
  26. 26.
    V. Varadarajan, Geometry of Quantum Theory II (Princeton, van Nostrand, 1970)MATHGoogle Scholar
  27. 27.
    I. Stubbe, B.V. Steirteghem, Propositional systems, Hilbert lattices and generalized Hilbert spaces, in Handbook of Quantum Logic Quantum Structures: Quantum Structures, ed. by K. Engesser, D.M. Gabbay, D. Lehmann (Elsevier, Amsterdam, 2007), pp. 477–523CrossRefGoogle Scholar
  28. 28.
    M. Solèr, Communications in Algebra 23, 219–243Google Scholar
  29. 29.
    M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007)Google Scholar
  30. 30.
    C. Gardiner, P. Zoller, Quantum noise (Springer, 2004)Google Scholar
  31. 31.
    S. Fortin, L. Vanni, Found. Phys. 44, 1258–1268 (2014)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    W. Zurek, Phys. Rev. D 24, 1516–1525 (1981)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    W. Zurek, Rev. Mod. Phys. 75, 715–776 (2003)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Castagnino, S. Fortin, R. Laura, O. Lombardi, Class. Quant. Grav. 25, 154002 (2008)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Castagnino, S. Fortin, O. Lombardi, Mod. Phys. Lett. A 25, 1431–1439 (2010)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    M. Castagnino, S. Fortin, O. Lombardi, J. Phys. A 43, 065304 (2010)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Castagnino, S. Fortin, O. Lombardi, Mod. Phys. Lett. A 25, 611–617 (2010)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Ardenghi, S. Fortin, M. Narvaja, O. Lombardi, Int. J. Mod. Phys. D 20, 861–875 (2011)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Castagnino, S. Fortin, Int. J. Theor. Phys. 50, 2259–2267 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Castagnino, S. Fortin, Int. J. Theor. Phys. 52, 1379–1398 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    S. Fortin, O. Lombardi, M. Castagnino, Braz. J. Phys. 44, 138–153 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Castagnino, S. Fortin, Mod. Phys. Lett. A 26, 2365–2373 (2011)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Bub, Interpreting the Quantum World (Cambridge University Press, Cambridge, 1997)MATHGoogle Scholar
  44. 44.
    D.W. Cohen, An Introduction to Hilbert Space and Quantum Logic (Springer, New York, 1989)CrossRefMATHGoogle Scholar
  45. 45.
    C. Kiefer, D. Polarski, Adv. Sci. Lett. 2, 164–173 (2009)CrossRefGoogle Scholar
  46. 46.
    C. Kiefer, D. Polarski, Ann. Phys. 7, 137–158 (1998)CrossRefGoogle Scholar
  47. 47.
    M. Castagnino, R. Laura, Phys. Rev. A 62, 022107 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    M. Castagnino, O. Lombardi, Phys. Rev. A 72, 012102 (2005)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    M. Rédei, S. Summers, Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 38(2), 390–417 (2007)CrossRefGoogle Scholar
  50. 50.
    M. Castagnino, M. Gadella, F. Gaioli, R. Laura, Int. J. Theor. Phys. 38, 2823–2865 (1999)MathSciNetCrossRefGoogle Scholar
  51. 51.
    M. Castagnino, R. Id, Betan, R. Laura, R.J. Liotta, J. Phys. A 35, 6055 (2002)Google Scholar
  52. 52.
    M. Castagnino, R. Laura, Phys. Rev. A 56, 108 (1997)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    A. Bohm, I. Antoniou, P. Kielanowski, J. Math. Phys. 36, 2593 (1995)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    A. Bohm, M. Gadella, G. Bruce, Mainland. Am. J. Phys. 57, 1103 (1989)ADSCrossRefGoogle Scholar
  55. 55.
    I.E. Antoniou, M. Gadella, E. Karpov, I. Prigogine, G. Pronko, Chaos. Solitons Fractals 12, 2757–2775 (2001)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Rev Baumgärtel, Math. Phys. 18, 61 (2006)Google Scholar
  57. 57.
    T. Petrosky, I. Prigogine, S. Tasaki, Phys. A 173, 175–242 (1991)MathSciNetCrossRefGoogle Scholar
  58. 58.
    T. Petrosky, I. Prigogine, Phys. A 175, 146–209 (1991)MathSciNetCrossRefGoogle Scholar
  59. 59.
    I. Antoniou, I. Prigogine, Phys. A 192, 443–464 (1993)MathSciNetCrossRefGoogle Scholar
  60. 60.
    I.E. Antoniou, Z. Suchenecki, R. Laura, S. Tasaki, Phys. A 241, 737–772 (1997)CrossRefGoogle Scholar
  61. 61.
    J.M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Cambridge, 1968)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastian Fortin
    • 1
  • Federico Holik
    • 2
  • Leonardo Vanni
    • 1
  1. 1.CONICET - Department of Physics, Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Física La Plata, CONICET & Departamento de Física, UNLPLa PlataArgentina

Personalised recommendations