Advertisement

Supersymmetric Black Holes and Attractors in Gauged Supergravity

  • Dietmar KlemmEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 176)

Abstract

These are notes of lectures given by the author at the school ‘Theoretical frontiers in black holes and cosmology’, iiP Natal (Brazil), June 2015. They are divided into three parts. The first contains a brief introduction to matter-coupled \(N=2\) gauged supergravity in four dimensions and its ingredients. Part two deals with the attractor mechanism in gauged supergravity, while in the last part we show how to construct both supersymmetric and nonextremal black holes in these theories.

Keywords

Black Hole Black Hole Solution Vector Multiplet Extremal Black Hole Attractor Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics. Class. Quantum Gravity 26, 224002 (2009). arXiv:0903.3246 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis, R. Meyer, Effective holographic theories for low-temperature condensed matter systems. JHEP 1011, 151 (2010). arXiv:1005.4690 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    N. Iizuka, N. Kundu, P. Narayan, S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity. JHEP 1201, 094 (2012). arXiv:1105.1162 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Ferrara, R. Kallosh, A. Strominger, \(N=2\) extremal black holes. Phys. Rev. D 52, 5412 (1995). arXiv:hep-th/9508072 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Strominger, Macroscopic entropy of \(N=2\) extremal black holes. Phys. Lett. B 383, 39 (1996). arXiv:hep-th/9602111 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D 54, 1514 (1996). arXiv:hep-th/9602136 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D 54, 1525 (1996). arXiv:hep-th/9603090 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B 500, 75 (1997). arXiv:hep-th/9702103 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J.F. Morales, H. Samtleben, Entropy function and attractors for AdS black holes. JHEP 0610, 074 (2006). arXiv:hep-th/0608044 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Hübscher, P. Meessen, T. Ortín, S. Vaulà, Supersymmetric \(N=2\) Einstein-Yang-Mills monopoles and covariant attractors. Phys. Rev. D 78, 065031 (2008). arXiv:0712.1530 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. Bellucci, S. Ferrara, A. Marrani, A. Yeranyan, \(d=4\) black hole attractors in \(N=2\) supergravity with Fayet-Iliopoulos terms. Phys. Rev. D 77, 085027 (2008). arXiv:0802.0141 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S.L. Cacciatori, D. Klemm, Supersymmetric AdS\(_4\) black holes and attractors. JHEP 1001, 085 (2010). arXiv:0911.4926 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    G. Dall’Agata, A. Gnecchi, Flow equations and attractors for black holes in \(N=2\) \(\text{ U }(1)\) gauged supergravity. JHEP 1103, 037 (2011). arXiv:1012.3756 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    S. Kachru, R. Kallosh, M. Shmakova, Generalized attractor points in gauged supergravity. Phys. Rev. D 84, 046003 (2011). arXiv:1104.2884 [hep-th]ADSCrossRefGoogle Scholar
  16. 16.
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, T. Magri, \(N=2\) supergravity and \(N=2\) super-Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111 (1997). arXiv:hep-th/9605032 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D.Z. Freedman, A. Van Proeyen, Supergravity (Cambridge University Press, Cambridge, 2012)CrossRefzbMATHGoogle Scholar
  18. 18.
    A. Van Proeyen, “\(N=2\) supergravity in \(d=4,5,6\) and its matter couplings,” extended version of lectures given during the semester “Supergravity, superstrings and M-theory” at Institut Henri Poincaré, Paris, November 2000, http://itf.fys.kuleuven.ac.be/~toine/home.htm#B
  19. 19.
    N. Halmagyi, BPS black hole horizons in \(N=2\) gauged supergravity. JHEP 1402, 051 (2014). arXiv:1308.1439 [hep-th]ADSCrossRefGoogle Scholar
  20. 20.
    A. Anabalón, D. Astefanesei, On attractor mechanism of \(\text{ AdS }_4\) black holes. Phys. Lett. B 727, 568 (2013). arXiv:1309.5863 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    S. Chimento, D. Klemm, N. Petri, Supersymmetric black holes and attractors in gauged supergravity with hypermultiplets. JHEP 1506, 150 (2015). arXiv:1503.09055 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Cvetič et al., Embedding AdS black holes in ten- and eleven dimensions. Nucl. Phys. B 558, 96 (1999). arXiv:hep-th/9903214 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    D. Klemm, O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II. Class. Quantum Gravity 30, 065003 (2013). arXiv:1211.1618 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    D.D.K. Chow, G. Compère, Dyonic AdS black holes in maximal gauged supergravity. Phys. Rev. D 896, 065003 (2014). arXiv:1311.1204 [hep-th]
  25. 25.
    N. Halmagyi, T. Vanel, AdS black holes from duality in gauged supergravity. JHEP 1404, 130 (2014). arXiv:1312.5430 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    N. Halmagyi, Static BPS black holes in AdS\(_4\) with general dyonic charges. JHEP 1503, 032 (2015). arXiv:1408.2831 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Cvetič, G.W. Gibbons, C.N. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions. Phys. Rev. Lett. 106, 121301 (2011). arXiv:1011.0008 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    C. Toldo, S. Vandoren, Static nonextremal AdS\(_4\) black hole solutions. JHEP 1209, 048 (2012). arXiv:1207.3014 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J.M. Maldacena, C. Nuñez, Supergravity description of field theories on curved manifolds and a no go theorem. Int. J. Mod. Phys. A 16, 822 (2001). arXiv:hep-th/0007018 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory. Nucl. Phys. B 383, 395 (1992). arXiv:hep-th/9203018 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    M.M. Caldarelli, D. Klemm, Supersymmetry of anti-de Sitter black holes. Nucl. Phys. B 545, 434 (1999). arXiv:hep-th/9808097 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M.J. Duff, J.T. Liu, Anti-de Sitter black holes in gauged \(N=8\) supergravity. Nucl. Phys. B 554, 237 (1999). arXiv:hep-th/9901149 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    D. Klemm, O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry. JHEP 1301, 053 (2013). arXiv:1207.2679 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    A. Gnecchi, N. Halmagyi, Supersymmetric black holes in AdS\(_4\) from very special geometry. JHEP 1404, 173 (2014). arXiv:1312.2766 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    J.F. Plebański, M. Demiański, Rotating, charged, and uniformly accelerating mass in general relativity. Ann. Phys. 98, 98 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    J.B. Griffiths, J. Podolsky, A new look at the Plebański-Demiański family of solutions. Int. J. Mod. Phys. D 15, 335 (2006). arXiv:gr-qc/0511091
  37. 37.
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10, 280 (1968)zbMATHGoogle Scholar
  38. 38.
    J.F. Plebański, A class of solutions of Einstein-Maxwell equations. Ann. Phys. 90, 196 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    O.J.C. Dias, J.P.S. Lemos, Pair of accelerated black holes in anti-de Sitter background: AdS C metric. Phys. Rev. D 67, 064001 (2003). arXiv:hep-th/0210065 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Z.-W. Chong, M. Cvetič, H. Lu, C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities. Nucl. Phys. B 717, 246 (2005). arXiv:hep-th/0411045 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    A. Gnecchi, K. Hristov, D. Klemm, C. Toldo, O. Vaughan, Rotating black holes in 4d gauged supergravity. JHEP 1401, 127 (2014). arXiv:1311.1795 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano and INFN, Sezione di MilanoMilanoItaly

Personalised recommendations