Advertisement

Introductory Lectures on Extended Supergravities and Gaugings

  • Antonio Gallerati
  • Mario TrigianteEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 176)

Abstract

In an ungauged supergravity theory, the presence of a scalar potential is allowed only for the minimal \(N=1\) case. In extended supergravities, a non-trivial scalar potential can be introduced without explicitly breaking supersymmetry only through the so-called gauging procedure. The latter consists in promoting a suitable global symmetry group to local symmetry to be gauged by the vector fields of the theory. Gauged supergravities provide a valuable approach to the study of superstring flux-compactifications and the construction of phenomenologically viable, string-inspired models. The aim of these lectures is to give a pedagogical introduction to the subject of gauged supergravities, covering just selected issues and discussing some of their applications.

Keywords

Gauge Group Scalar Field Bianchi Identity Coset Representative Gauge Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O. Hohm, H. Samtleben, Exceptional field theory. II. E\(_{7(7)}\). Phys. Rev. D 89, 066017 (2014). arXiv:1312.4542 [hep-th]ADSCrossRefGoogle Scholar
  2. 2.
    C. Hull, B. Zwiebach, Double field theory. JHEP 0909, 099 (2009). arXiv:0904.4664 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    C.M. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B 438, 109 (1995). arXiv:hep-th/9410167 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    B. de Wit, H. Nicolai, N \(=\) 8 Supergravity. Nucl. Phys. B 208, 323 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    B. de Wit, H. Samtleben, M. Trigiante, On Lagrangians and gaugings of maximal supergravities. Nucl. Phys. B 655, 93 (2003). arXiv:hep-th/0212239 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B. de Wit, H. Samtleben, M. Trigiante, Maximal supergravity from IIB flux compactifications. Phys. Lett. B 583, 338 (2004). arXiv:hep-th/0311224 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    B. de Wit, H. Samtleben, Gauged maximal supergravities and hierarchies of non Abelian vector-tensor systems. Fortsch. Phys. 53, 442 (2005). arXiv:hep-th/0501243 ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    B. de Wit, H. Samtleben, M. Trigiante, Magnetic charges in local field theory. JHEP 0509, 016 (2005). arXiv:hep-th/0507289 MathSciNetCrossRefGoogle Scholar
  9. 9.
    C.M. Hull, Noncompact gaugings of N \(=8\) supergravity. Phys. Lett. B 142, 39 (1984)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    C.M. Hull, More gaugings of N \(=8\) supergravity. Phys. Lett. B 148, 297 (1984)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Trigiante, Dual Gauged Supergravities (17th SIGRAV Conference Turin, September 4-7, Italy, 2006). arXiv:hep-th/0701218 Google Scholar
  12. 12.
    H. Samtleben, Lectures on gauged supergravity and flux compactifications. Class. Quant. Grav. 25, 214002 (2008). arXiv:0808.4076 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Grana, Flux compactifications in string theory: a comprehensive review. Phys. Rept. 423, 91 (2006). arXiv:hep-th/0509003 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Blumenhagen, B. Kors, D. Lust, S. Stieberger, Four-dimensional string compactifications with D-Branes, orientifolds and fluxes. Phys. Rept. 445, 1 (2007). arXiv:hep-th/0610327 ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M.R. Douglas, S. Kachru, Flux compactification. Rev. Mod. Phys. 79, 733 (2007). arXiv:hep-th/0610102 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    F. Cordaro, P. Fre, L. Gualtieri, P. Termonia, M. Trigiante, N \(=\) 8 gaugings revisited: an exhaustive classification. Nucl. Phys. B 532, 245 (1998). arXiv:hep-th/9804056 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Nicolai, H. Samtleben, Maximal gauged supergravity in three-dimensions. Phys. Rev. Lett. 86, 1686 (2001). arXiv:hep-th/0010076 ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    B. de Wit, H. Samtleben, M. Trigiante, The maximal D \(=\) 4 supergravities. JHEP 0706, 049 (2007). arXiv:0705.2101 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre, T. Magri, N \(=\) 2 supergravity and N \(=\) 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111 (1997). arXiv:hep-th/9605032 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M.K. Gaillard, B. Zumino, Duality rotations for interacting fields. Nucl. Phys. B 193, 221 (1981)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Ferrara, A. Marrani, E. Orazi, M. Trigiante, Dualities near the horizon. JHEP 1311, 056 (2013). arXiv:1305.2057 [hep-th]ADSCrossRefGoogle Scholar
  22. 22.
    P.A.M. Dirac, Quantized singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A 133, 60 (1931)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    J.S. Schwinger, Magnetic charge and quantum field theory. Phys. Rev. 144, 1087 (1966)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Zwanziger, Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489 (1968)ADSCrossRefGoogle Scholar
  25. 25.
    B. de Wit, P.G. Lauwers, A. Van Proeyen, Lagrangians of N \(=\) 2 supergravity—matter systems. Nucl. Phys. B 255, 569 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    P. Van Nieuwenhuizen, Supergravity. Phys. Rep. 68, 189 (1981)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Ferrara L. Maiani, An introduction to supersymmetry breaking in extended supergravity, in 5th SILARG Symposium on Relativity, Supersymmetry and Cosmology (Bariloche, Argentina, January 4–11, 1985)Google Scholar
  28. 28.
    S. Cecotti, L. Girardello, M. Porrati, Constraints on partial superhiggs. Nucl. Phys. B 268, 295 (1986)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. D’Auria, S. Ferrara, On fermion masses, gradient flows and potential in supersymmetric theories. JHEP 0105, 034 (2001). arXiv:hep-th/0103153 MathSciNetCrossRefGoogle Scholar
  30. 30.
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999) (Adv. Theor. Math. Phys. 2, 231 (1998)) arXiv:hep-th/9711200
  31. 31.
    E. Cremmer, S. Ferrara, C. Kounnas, D.V. Nanopoulos, Naturally vanishing cosmological constant in N \(=\) 1 supergravity. Phys. Lett. B 133, 61 (1983)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    J.R. Ellis, C. Kounnas, D.V. Nanopoulos, No scale supersymmetric guts. Nucl. Phys. B 247, 373 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    R. Barbieri, E. Cremmer, S. Ferrara, Flat and positive potentials in \(N=1\) supergravity. Phys. Lett. B 163, 143 (1985)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    C. Angelantonj, S. Ferrara, M. Trigiante, New D \(=\) 4 gauged supergravities from N \(=\) 4 orientifolds with fluxes. JHEP 0310, 015 (2003). arXiv:hep-th/0306185 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    R. D’Auria, S. Ferrara, F. Gargiulo, M. Trigiante, S. Vaula, N \(=\) 4 supergravity Lagrangian for type IIB on T**6 / Z(2) in presence of fluxes and D3-branes. JHEP 0306, 045 (2003). hep-th/0303049MathSciNetCrossRefGoogle Scholar
  36. 36.
    J. Scherk, J.H. Schwarz, Nucl. Phys. B 153, 61 (1979)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    N. Kaloper, R.C. Myers, The odd story of massive supergravity. JHEP 9905, 010 (1999). hep-th/9901045ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    V. Mathai, J.M. Rosenberg, T duality for torus bundles with H fluxes via noncommutative topology. Commun. Math. Phys. 253, 705 (2004). hep-th/0401168ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    C.M. Hull, A geometry for non-geometric string backgrounds. JHEP 0510, 065 (2005). hep-th/0406102ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Shelton, W. Taylor, B. Wecht, Nongeometric flux compactifications. JHEP 0510, 085 (2005). hep-th/0508133ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    N. Hitchin, Lectures on Generalized Geometry. arXiv:1008.0973 [math.DG]
  42. 42.
    M. Gualtieri, Generalized Complex Geometry. arXiv:math/0401221 [math-dg]
  43. 43.
    C.M. Hull, R.A. Reid-Edwards, Gauge symmetry, T-duality and doubled geometry. JHEP 0808, 043 (2008). arXiv:0711.4818 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    A. Dabholkar, C. Hull, Generalised T-duality and non-geometric backgrounds. JHEP 0605, 009 (2006). arXiv:hep-th/0512005 ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    O. Hohm, C. Hull, B. Zwiebach, Generalized metric formulation of double field theory. JHEP 1008, 008 (2010). arXiv:1006.4823 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    C.M. Hull, Generalised geometry for M-theory. JHEP 0707, 079 (2007). arXiv:hep-th/0701203 ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    P.P. Pacheco, D. Waldram, M-theory, exceptional generalised geometry and superpotentials. JHEP 0809, 123 (2008). arXiv:0804.1362 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    O. Hohm, H. Samtleben, Exceptional form of D \(=\) 11 supergravity. Phys. Rev. Lett. 111, 231601 (2013). arXiv:1308.1673 [hep-th]ADSCrossRefGoogle Scholar
  49. 49.
    O. Hohm, H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field theory. JHEP 1501, 131 (2015). arXiv:1410.8145 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    G. Dibitetto, A. Guarino, D. Roest, Charting the landscape of N \(=\) 4 flux compactifications. JHEP 1103, 137 (2011). arXiv:1102.0239 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    G. Dall’Agata, G. Inverso, On the vacua of N \(=\) 8 gauged supergravity in 4 dimensions. Nucl. Phys. B 859, 70 (2012). arXiv:1112.3345 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    G. Inverso, De Sitter Vacua in N \(=\) 8 Supergravity, MSc Thesis, Università di Padova, Italy, 14 July (2010)Google Scholar
  53. 53.
    E. Cremmer, B. Julia, The N \(=\) 8 supergravity theory. 1. The Lagrangian. Phys. Lett. B 80, 48 (1978)ADSCrossRefGoogle Scholar
  54. 54.
    E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B 159, 141 (1979)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    A. Le Diffon, H. Samtleben, Supergravities without an action: gauging the trombone. Nucl. Phys. B 811, 1 (2009). arXiv:0809.5180 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    A. Le Diffon, H. Samtleben, M. Trigiante, N \(=\) 8 supergravity with local scaling symmetry. JHEP 1104, 079 (2011). arXiv:1103.2785 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    B. de Wit, H. Nicolai, The consistency of the S**7 truncation in D \(=\) 11 supergravity. Nucl. Phys. B 281, 211 (1987)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    E. Cremmer, J. Scherk, J.H. Schwarz, Spontaneously broken N \(=\) 8 supergravity. Phys. Lett. B 84, 83 (1979)ADSCrossRefGoogle Scholar
  59. 59.
    L. Andrianopoli, R. D’Auria, S. Ferrara, M.A. Lledo, Gauging of flat groups in four-dimensional supergravity. JHEP 0207, 010 (2002). arXiv:hep-th/0203206 ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    G. Dall’Agata, G. Inverso, de Sitter vacua in N \(=\) 8 supergravity and slow-roll conditions. Phys. Lett. B 718, 1132 (2013). arXiv:1211.3414 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    G. Dall’Agata, G. Inverso, M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories. Phys. Rev. Lett. 109, 201301 (2012). arXiv:1209.0760 [hep-th]ADSCrossRefGoogle Scholar
  62. 62.
    G. Dall’Agata, G. Inverso, A. Marrani, Symplectic deformations of gauged maximal supergravity. JHEP 1407, 133 (2014). arXiv:1405.2437 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    A. Borghese, A. Guarino, D. Roest, All \(G_2\) invariant critical points of maximal supergravity. JHEP 1212, 108 (2012). arXiv:1209.3003 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    A. Borghese, G. Dibitetto, A. Guarino, D. Roest, O. Varela, The SU(3)-invariant sector of new maximal supergravity. JHEP 1303, 082 (2013)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    A. Borghese, A. Guarino, D. Roest, Triality, periodicity and stability of SO(8) gauged supergravity. JHEP 1305, 107 (2013). arXiv:1302.6057 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    A. Gallerati, H. Samtleben, M. Trigiante, The \({\cal {N}}>2 \) supersymmetric AdS vacua in maximal supergravity. JHEP 1412, 174 (2014). arXiv:1410.0711 [hep-th]
  67. 67.
    J. Tarrío, O. Varela, Electric/magnetic duality and RG flows in AdS\(_4\)/CFT\(_3\). JHEP 1401, 071 (2014). arXiv:1311.2933 [hep-th]ADSCrossRefGoogle Scholar
  68. 68.
    Y. Pang, C.N. Pope, J. Rong, Holographic RG flow in a new \(SO(3)\times SO(3)\) sector of \(\omega \)-deformed \(SO(8)\) gauged \({\cal {N}}=8 \) supergravity. JHEP 1508, 122 (2015). arXiv:1506.04270 [hep-th]
  69. 69.
    A. Anabalon, D. Astefanesei, Black holes in \(\omega \)-defomed gauged N \(=8\) supergravity. Phys. Lett. B 732, 137 (2014). arXiv:1311.7459 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    H. Lü, Y. Pang, C.N. Pope, An \(\omega \) deformation of gauged STU supergravity. JHEP 1404, 175 (2014). arXiv:1402.1994 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    S.Q. Wu, S. Li, Thermodynamics of static Dyonic AdS black holes in the \(\omega \)-Deformed Kaluza-Klein gauged supergravity theory. Phys. Lett. B 746, 276 (2015). arXiv:1505.00117 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    K. Lee, C. Strickland-Constable, D. Waldram, New Gaugings and Non-geometry. arXiv:1506.03457 [hep-th]
  73. 73.
    A. Guarino, D. L. Jafferis, O. Varela, String theory origin of dyonic N=8 Supergravity and Its Chern-Simons duals. Phys. Rev. Lett. 115(9), 091601 (2015) arXiv:1504.08009 [hep-th]
  74. 74.
    B. de Wit, H. Samtleben, M. Trigiante, The maximal D \(=\) 5 supergravities. Nucl. Phys. B 716, 215 (2005). arXiv:hep-th/0412173 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    H. Samtleben, M. Weidner, The maximal D \(=\) 7 supergravities. Nucl. Phys. B 725, 383 (2005). arXiv:hep-th/0506237
  76. 76.
    B. de Wit, H. Nicolai, H. Samtleben, Gauged supergravities, tensor hierarchies, and M-theory. JHEP 0802, 044 (2008). arXiv:0801.1294 [hep-th]MathSciNetCrossRefGoogle Scholar
  77. 77.
    P. K. Townsend, in Gauge Field Theories: Theoretical Studies and Computer Simulations ed. by W. Garazynski (Harwood Academic Chur, New York 1981)Google Scholar
  78. 78.
    S. Cecotti, S. Ferrara, L. Girardello, Massive vector multiplets from superstrings. Nucl. Phys. B 294, 537 (1987)ADSCrossRefGoogle Scholar
  79. 79.
    G. Dall’Agata, R. D’Auria, L. Sommovigo, S. Vaula, D \(=\) 4, N \(=\) 2 gauged supergravity in the presence of tensor multiplets. Nucl. Phys. B 682, 243 (2004). arXiv:hep-th/0312210 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    R. D’Auria, L. Sommovigo, S. Vaula, N \(=\) 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes. JHEP 0411, 028 (2004). arXiv:hep-th/0409097 MathSciNetCrossRefGoogle Scholar
  81. 81.
    J. Louis, A. Micu, Type 2 theories compactified on Calabi-Yau three folds in the presence of background fluxes. Nucl. Phys. B 635, 395 (2002). arXiv:hep-th/0202168 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    E. Cremmer, B. Julia, H. Lu, C.N. Pope, Dualization of dualities. 1. Nucl. Phys. B 523, 73 (1998). arXiv:hep-th/9710119 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Y. Tanii, Introduction to Supergravities in Diverse Dimensions. arXiv:hep-th/9802138
  84. 84.
    M. Gunaydin, L.J. Romans, N.P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions. Nucl. Phys. B 272, 598 (1986)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    L. Andrianopoli, F. Cordaro, P. Fre’, L. Gualtieri, Nonsemisimple gaugings of D \(=\) 5 N \(=\) 8 supergravity and FDA.s. Class. Quant. Grav. 18, 395 (2001). arXiv:hep-th/0009048 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    E. Bergshoeff, H. Samtleben, E. Sezgin, The gaugings of maximal D \(=\) 6 supergravity. JHEP 0803, 068 (2008). arXiv:0712.4277 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    M. Pernici, K. Pilch, P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven-dimensions. Phys. Lett. B 143, 103 (1984)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    E. Bergshoeff, U. Gran, R. Linares, M. Nielsen, T. Ortin, D. Roest, The Bianchi classification of maximal D \(=\) 8 gauged supergravities. Class. Quant. Grav. 20, 3997 (2003). arXiv:hep-th/0306179 ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department DISATPolitecnico di TorinoTorinoItaly

Personalised recommendations