Advertisement

Three Lectures on the FGK Formalism and Beyond

  • Tomás OrtínEmail author
  • Pedro F. Ramírez
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 176)

Abstract

We review the formalism proposed by Ferrara, Gibbons and Kallosh to study charged, static, spherically symmetric black-hole solutions of \(d=4\) supergravity-like theories and its extension to objects of higher worldvolume dimensions in higher spacetime dimensions and the so-called H-FGK formalism based on variables transforming linearly under duality in the effective action. We also review applications of these formalisms to 4- and 5-dimensional supergravity theories.

Keywords

Black Hole Bianchi Identity Supergravity Theory Extremal Black Hole Black String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

TO would like to thank the organizers of the School on Theoretical Frontiers in Black Holes and Cosmology, the International Institute of Physics of Natal and, specially, Emanuele Orazi for the opportunity to participate in an excellent school in a wonderful setting, for the financial support and, last, but not least, for their kindness during the school and workshop. This work has been supported in part by the Spanish Ministry of Science and Education grant FPA2012-35043-C02-01, the Centro de Excelencia Severo Ochoa Program grant SEV-2012-0249. The work of PFR was supported by Severo Ochoa pre-doctoral grant SVP-2013-067903 TO wishes to thank M.M. Fernández for her permanent support.

References

  1. 1.
    T. Ortín, Gravity and Strings, 2nd edn. (Cambridge University Press, Cambridge, 2015)CrossRefzbMATHGoogle Scholar
  2. 2.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B 500, 75–93 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Ferrara, R. Kallosh, A. Strominger, \({\cal{N}}=2\) extremal black holes. Phys. Rev. D 52, 5412 (1995)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Strominger, Macroscopic entropy of \({\cal{N}}=2\) extremal black holes. Phys. Lett. B 383, 39 (1996)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D 54, 1514 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D 54, 1525 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M.K. Gaillard, B. Zumino, Duality rotations for interacting fields. Nucl. Phys. B 193, 221 (1981)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    E. Schrödinger, Contributions to Born’s new theory of the electromagnetic field. Proc. Roy. Soc. Lond. A150, 465–477 (1935)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    C.W. Misner, J.A. Wheeler, Classical physics as geometry: gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space. Ann. Phys. 2, 525 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    P. van Nieuwenhuizen, J.A.M. Vermaseren, One loop divergences in the quantum theory of supergravity. Phys. Lett. B 65, 263 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    M.T. Grisaru, P. van Nieuwenhuizen, J.A.M. Vermaseren, One loop renormalizability of pure supergravity and of Maxwell-Einstein theory in extended supergravity. Phys. Rev. Lett. 37, 1662 (1976)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Ferrara, J. Scherk, B. Zumino, Algebraic properties of extended supergravity theories. Nucl. Phys. B 121, 393 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    E. Cremmer, J. Scherk, S. Ferrara, U(n) invariance in extended supergravity. Phys. Lett. B 68, 234 (1977)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    G.W. Gibbons, Antigravitating black hole solitons with scalar hair in \(N=4\) supergravity. Nucl. Phys. B 207, 337 (1982)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G.W. Gibbons, R. Kallosh, B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992–4995 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    P. Breitenlohner, D. Maison, G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories. Commun. Math. Phys. 120, 295 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante, T. Van Riet, Generating geodesic flows and supergravity solutions. Nucl. Phys. B 812, 343 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    P. Dobiasch, D. Maison, Stationary, spherically symmetric solutions of Jordan’s unified theory of gravity and electromagnetism gen. Rel. Grav. 14, 231 (1982)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D.V. Gal’tsov, O.A. Rytchkov, Generating branes via sigma models. Phys. Rev. D 58, 122001 (1998)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    P. Fré, V. Gili, F. Gargiulo, A.S. Sorin, K. Rulik, M. Trigiante, Cosmological backgrounds of superstring theory and solvable algebras: oxidation and branes. Nucl. Phys. B 685, 3 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    P. Fré, A.S. Sorin, Integrability of supergravity billiards and the generalized Toda lattice equation. Nucl. Phys. B 733, 334 (2006)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    M. Gunaydin, A. Neitzke, B. Pioline, A. Waldron, Quantum attractor flows. JHEP 0709, 056 (2007)MathSciNetGoogle Scholar
  23. 23.
    D. Gaiotto, W. Li, M. Padi, Non-supersymmetric attractor flow in symmetric spaces. JHEP 0712, 093 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    W. Chemissany, A. Ploegh, T. Van Riet, A Note on scaling cosmologies, geodesic motion and pseudo-susy. Class. Quantum Grav. 24, 4679 (2007)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    M. Berkooz, B. Pioline, 5D black holes and non-linear sigma models. JHEP 0805, 045 (2008)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Fré, A.S. Sorin, The Weyl group and asymptotics: all supergravity billiards have a closed form general integral. Nucl. Phys. B 815, 430 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    G. Bossard, H. Nicolai, K.S. Stelle, Universal BPS structure of stationary supergravity solutions. JHEP 0907, 003 (2009)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    G. Bossard, The extremal black holes of N=4 supergravity from so(8,2+n) nilpotent orbits. Gen. Rel. Grav. 42, 539 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    W. Chemissany, P. Fré, A.S. Sorin, The integration algorithm of Lax equation for both generic Lax matrices and generic initial conditions. Nucl. Phys. B 833, 220 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    W. Chemissany, J. Rosseel, M. Trigiante, T. Van Riet, The full integration of black hole solutions to symmetric supergravity theories. Nucl. Phys. B 830, 391 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    M. Günaydin, Lectures on Spectrum Generating Symmetries and U-duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace,Google Scholar
  32. 32.
    P. Figueras, E. Jamsin, J.V. Rocha, A. Virmani, Integrability of five dimensional minimal supergravity and charged rotating black holes. Class. Quant. Grav. 27, 135011 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    W. Chemissany, P. Fre, J. Rosseel, A.S. Sorin, M. Trigiante, T. Van Riet, Black holes in supergravity and integrability. JHEP 1009, 080 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    A. Sen, Entropy function for heterotic black holes. JHEP 0603, 008 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    E.B. Bogomol’nyi, Stability of Classical Solutions. Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861]Google Scholar
  36. 36.
    A. Ceresole, G. Dall’Agata, Flow equations for non-BPS extremal black holes. JHEP 0703, 110 (2007)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Lopes Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter and J. Perz, First-order flow equations for extremal black holes in very special geometry, JHEP 0710, 063 (2007)Google Scholar
  38. 38.
    L. Andrianopoli, R. D’Auria, E. Orazi, M. Trigiante, First order description of black holes in moduli space. JHEP 0711, 032 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    S. Ferrara, A. Marrani, E. Orazi, Maurer-Cartan equations and black hole superpotentials in \(N = 8\) supergravity. Phys. Rev. D 81, 085013 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    G. Bossard, Y. Michel, B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential. JHEP 1001, 038 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    A. Ceresole, G. Dall’Agata, S. Ferrara, A. Yeranyan, Universality of the superpotential for \(d = 4\) extremal black holes. Nucl. Phys. B 832, 358 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    A. Ceresole, G. Dall’Agata, S. Ferrara, A. Yeranyan, First order flows for \({\cal{N}}=2\) extremal black holes and duality invariants. Nucl. Phys. B 824, 239 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    A. de Antonio Martín, T. Ortín, C.S. Shahbazi, The FGK formalism for black p-branes in d dimensions, JHEP 1205, 045 (2012)Google Scholar
  44. 44.
    G.T. Horowitz, A. Strominger, Black strings and p-Branes. Nucl. Phys. B 360, 197 (1991)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    P. Meessen, T. Ortín, Non-extremal black holes of \({\cal{N}}=2\), d\(=\)5 supergravity. Phys. Lett. B 707, 178–183 (2012)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    B. Janssen, P. Smyth, T. Van Riet, B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions. JHEP 0804, 007 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    J.X. Lu, ADM masses for black strings and p-branes. Phys. Lett. B 313, 29 (1993)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence. Phys. Rev. D 60, 046002 (1999)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    W.A. Sabra, General BPS black holes in five-dimensions. Mod. Phys. Lett. A 13, 239 (1998)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    P. Galli, T. Ortín, J. Perz, C.S. Shahbazi, Non-extremal black holes of \({\cal{N}}=2\), d=4 supergravity. JHEP 1107, 041 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    T. Mohaupt, K. Waite, Instantons, black holes and harmonic functions. JHEP 0910, 058 (2009)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    T. Mohaupt, O. Vaughan, Non-extremal black holes, harmonic functions, and attractor equations. Class. Quantum Grav. 27, 235008 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    T. Mohaupt, O. Vaughan, The Hesse potential, the c-map and black hole solutions. JHEP 1207, 163 (2012)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    P. Meessen, T. Ortín, The supersymmetric configurations of N\(=\)2, D\(=\)4 supergravity coupled to vector supermultiplets. Nucl. Phys. B 749, 291 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    P. Bueno, P. Galli, P. Meessen, T. Ortín, Black holes and equivariant charge vectors in \({\cal{N}}=2\), d\(=\)4 supergravity. JHEP 1309, 010 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, Black holes admitting a Freudenthal dual. Phys. Rev. D 80, 026003 (2009)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    S. Ferrara, A. Marrani, A. Yeranyan, Freudenthal duality and generalized special geometry. Phys. Lett. B 701, 640 (2011)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    P. Galli, P. Meessen, T. Ortín, The Freudenthal gauge symmetry of the black holes of \({\cal{N}}=2\), d\(=\)4 supergravity. JHEP 1305, 011 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    P. Meessen, T. Ortín, J. Perz, C.S. Shahbazi, H-FGK-formalism for black-hole solutions of \({\cal{N}}=2\), d\(=\)4 and d\(=\)5 supergravity. Phys. Lett. B 709, 260 (2012)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    J. Bellorín, P. Meessen, T. Ortín, Supersymmetry, attractors and cosmic censorship. Nucl. Phys. B 762, 229–255 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    P. Galli, T. Ortín, J. Perz, C.S. Shahbazi, Black hole solutions of \({\cal {N}} =2\), d\(=\)4 supergravity with a quantum correction, in the H-FGK formalismGoogle Scholar
  62. 62.
    E.G. Gimon, F. Larsen, J. Simon, Constituent model of extremal non-BPS black holes. JHEP 0907, 052 (2009)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    P. Galli, K. Goldstein, S. Katmadas, J. Perz, First-order flows and stabilisation equations for non-BPS extremal black holes. JHEP 1106, 070 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    G. Bossard, S. Katmadas, Duality covariant non-BPS first order systems. JHEP 1209, 100 (2012)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    D.D.K. Chow, G. Compère, Seed for general rotating non-extremal black holes of \({\cal{N}}=8\) supergravity. Class. Quantum Grav. 31, 022001 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de Física Teórica UAM/CSIC C/ Nicolás CabreraMadridSpain

Personalised recommendations