Advertisement

PAR-CLIP: A Genomic Technique to Dissect RNA-Protein Interactions

Chapter

Abstract

RNA-protein interactions are central to cellular homeostasis and control every aspect of RNA metabolism in the cell. A variety of in vitro and in vivo techniques have been developed in the last three decades to study these interactions. Here we provide a brief review of the currently available techniques as well as an in-depth discussion of experimental and data analysis considerations for Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP). The RNA-protein networks interrogated by PAR-CLIP and other high-throughput methods will greatly enhance our understanding of post-transcriptional gene regulation in cellular homeostasis and disease.

Keywords

RNA-binding protein Post-transcriptional gene regulation High-throughput sequencing Transcriptomics Crosslinking 

Supplementary material

References

  1. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073. doi: 10.1038/nature09534 CrossRefGoogle Scholar
  2. Anders G, Mackowiak SD, Jens M et al (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40:D180–D186. doi: 10.1093/nar/gkr1007 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172:803–808. doi: 10.1083/jcb.200512082 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrus A, Kuimelis RG (2001) Base composition analysis of nucleosides using HPLC. Curr Protoc Nucleic Acid Chem Chapter 10:Unit 10.6–10.6.6. doi: 10.1002/0471142700.nc1006s01
  5. Ascano M, Hafner M, Cekan P et al (2012a) Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip Rev RNA 3:159–177. doi: 10.1002/wrna.1103 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ascano M, Mukherjee N, Bandaru P et al (2012b) FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492:382–386. doi: 10.1038/nature11737 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bailey TL (2002) Discovering novel sequence motifs with MEME. Curr Protoc Bioinformatics Chapter 2:Unit 2.4–2.4.35. doi: 10.1002/0471250953.bi0204s00 Google Scholar
  8. Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690. doi: 10.1016/j.molcel.2012.05.021 PubMedCrossRefGoogle Scholar
  9. Bandziulis RJ, Swanson MS, Dreyfuss G (1989) RNA-binding proteins as developmental regulators. Genes Dev 3:431–437. doi: 10.1101/gad.3.4.431 PubMedCrossRefGoogle Scholar
  10. Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences [see comment]. Science 261:1411–1418PubMedCrossRefGoogle Scholar
  11. Buenrostro JD, Araya CL, Chircus LM et al (2014) Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat Biotechnol 32:562–568. doi: 10.1038/nbt.2880 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Burger K, Mühl B, Kellner M et al (2013) 4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol 10:1623–1630. doi: 10.4161/rna.26214 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Campbell ZT, Bhimsaria D, Valley CT et al (2012) Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. Cell Rep 1:570–581. doi: 10.1016/j.celrep.2012.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406. doi: 10.1016/j.cell.2012.04.031 PubMedCrossRefGoogle Scholar
  15. Chen B, Yun J, Kim MS et al (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol 15:R18. doi: 10.1186/gb-2014-15-1-r18 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen L, Yun S-W, Seto J et al (2003) The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Neuroscience 120:1005–1017. doi: 10.1016/S0306-4522(03)00406-8 PubMedCrossRefGoogle Scholar
  17. Chou C-H, Lin F-M, Chou M-T et al (2013) A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genomics 14(Suppl 1):S2. doi: 10.1186/1471-2164-14-S1-S2 PubMedPubMedCentralGoogle Scholar
  18. Cloonan N, Forrest ARR, Kolle G et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619. doi: 10.1038/nmeth.1223 PubMedCrossRefGoogle Scholar
  19. Corcoran DL, Georgiev S, Mukherjee N et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12:R79. doi: 10.1186/gb-2011-12-8-r79 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Creamer TJ, Darby MM, Jamonnak N et al (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7, e1002329. doi: 10.1371/journal.pgen.1002329 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–261. doi: 10.1016/j.cell.2011.06.013 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286. doi: 10.1002/wrna.31 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. doi: 10.1126/science.1258096 PubMedCrossRefGoogle Scholar
  24. Dreyfuss G, Choi YD, Adam SA (1984) Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies. Mol Cell Biol 4:1104–1114Google Scholar
  25. Dreyfuss G, Swanson MS, Piñol-Roma S (1988) Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem Sci 13:86–91PubMedCrossRefGoogle Scholar
  26. Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22:2079–2088PubMedPubMedCentralCrossRefGoogle Scholar
  27. Erhard F, Dölken L, Jaskiewicz L, Zimmer R (2013) PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol 14:R79. doi: 10.1186/gb-2013-14-7-r79 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Friedersdorf MB, Keene JD (2014) Advancing the functional utility of PAR-CLIP by quantifying background binding to mRNAs and lncRNAs. Genome Biol 15:R2. doi: 10.1186/gb-2014-15-1-r2 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gagnon KT, Maxwell ES (2010) Electrophoretic mobility shift assay for characterizing RNA–protein interaction. In: Nielsen H (ed) RNA. Humana, Totowa, NJ, pp 275–291Google Scholar
  30. Galarneau A, Richard S (2005) Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol 12:691–698. doi: 10.1038/nsmb963 PubMedCrossRefGoogle Scholar
  31. Ganguly S, Ghosh S, Chattopadhyay D, Das P (2004) Antisense molecular beacon strategy for in situ visualization of snRNA and fibrillarin protein interaction in Giardia lamblia. RNA Biol 1:48–53. doi: 10.4161/rna.1.1.928 Google Scholar
  32. Gay L, Karfilis KV, Miller MR et al (2014) Applying thiouracil tagging to mouse transcriptome analysis. Nat Protoc 9:410–420. doi: 10.1038/nprot.2014.023 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Geiger JA, Neugebauer KM (2005) Fluorescent detection of nascent transcripts and RNA-binding proteins in cell nuclei. In: Bindereif A, Schön A, Westhof E, Hartmann RK (eds) Handbook of RNA biochemistry. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 729–736CrossRefGoogle Scholar
  34. Georgiev S, Boyle AP, Jayasurya K et al (2010) Evidence-ranked motif identification. Genome Biol 11:R19. doi: 10.1186/gb-2010-11-2-r19 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gerber AP, Luschnig S, Krasnow MA et al (2006) Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci U S A 103:4487–4492. doi: 10.1073/pnas.0509260103 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845. doi: 10.1038/nrg3813 PubMedCrossRefGoogle Scholar
  37. Graf R, Munschauer M, Mastrobuoni G et al (2013) Identification of LIN28B-bound mRNAs reveals features of target recognition and regulation. RNA Biol 10:1146–1159. doi: 10.4161/rna.25194 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Granneman S, Kudla G, Petfalski E, Tollervey D (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci U S A 106:9613–9618. doi: 10.1073/pnas.0901997106 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840. doi: 10.1038/nature09267 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Günzl A, Bindereif A (1999) Oligonucleotide-targeted RNase H protection analysis of RNA-protein complexes. In: Haynes SR (ed) RNA-protein interaction protocols. Humana, New Jersey, pp 93–103CrossRefGoogle Scholar
  41. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141. doi: 10.1016/j.cell.2010.03.009 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hafner M, Max KEA, Bandaru P et al (2013) Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA 19:613–626. doi: 10.1261/rna.036491.112 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hafner M, Renwick N, Farazi TA et al (2012) Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods 58:164–170. doi: 10.1016/j.ymeth.2012.07.030 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hofacker IL, Stadler PF (2006) Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22:1172–1176. doi: 10.1093/bioinformatics/btl023 PubMedCrossRefGoogle Scholar
  45. Hogan DJ, Riordan DP, Gerber AP et al (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6:e255. doi: 10.1371/journal.pbio.0060255 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Huppertz I, Attig J, D’Ambrogio A et al (2014) iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65:274–287. doi: 10.1016/j.ymeth.2013.10.011 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Huranová M, Jablonski JA, Benda A et al (2009) In vivo detection of RNA-binding protein interactions with cognate RNA sequences by fluorescence resonance energy transfer. RNA 15:2063–2071. doi: 10.1261/rna.1678209 Google Scholar
  48. Ilagan J, Yuh P, Chalkley RJ et al (2009) The role of exon sequences in C complex spliceosome structure. J Mol Biol 394:363–375. doi: 10.1016/j.jmb.2009.09.019 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. doi: 10.1126/science.1168978 Google Scholar
  50. Jensen KB, Darnell RB (2008) CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol 488:85–98. doi: 10.1007/978-1-60327-475-3_6 Google Scholar
  51. Joyce GF (1994) In vitro evolution of nucleic acids. Curr Opin Struct Biol 4:331–336Google Scholar
  52. Jungkamp A-C, Stoeckius M, Mecenas D et al (2011) In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol Cell 44:828–840. doi: 10.1016/j.molcel.2011.11.009 Google Scholar
  53. Karginov FV, Conaco C, Xuan Z et al (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104:19291–19296. doi: 10.1073/pnas.0709971104 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Katsamba PS, Park S, Laird-Offringa IA (2002) Kinetic studies of RNA-protein interactions using surface plasmon resonance. Methods 26:95–104. doi: 10.1016/S1046-2023(02)00012-9 PubMedCrossRefGoogle Scholar
  55. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543. doi: 10.1038/nrg2111 PubMedCrossRefGoogle Scholar
  56. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307. doi: 10.1038/nprot.2006.47 PubMedCrossRefGoogle Scholar
  57. Khorshid M, Rodak C, Zavolan M (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res 39:D245–D252. doi: 10.1093/nar/gkq940 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kishore S, Jaskiewicz L, Burger L et al (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8:559–564. doi: 10.1038/nmeth.1608 PubMedCrossRefGoogle Scholar
  59. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915. doi: 10.1038/nsmb.1838 PubMedPubMedCentralCrossRefGoogle Scholar
  60. König J, Zarnack K, Rot G, et al (2011) iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp:2638. doi:10.3791/2638Google Scholar
  61. Kramer K, Sachsenberg T, Beckmann BM et al (2014) Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat Methods 11:1064–1070. doi: 10.1038/nmeth.3092 PubMedCrossRefGoogle Scholar
  62. Kudla G, Granneman S, Hahn D et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci U S A 108:10010–10015. doi: 10.1073/pnas.1017386108 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lambert N, Robertson A, Jangi M et al (2014) RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol Cell 54:887–900. doi: 10.1016/j.molcel.2014.04.016 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Landthaler M, Gaidatzis D, Rothballer A et al (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596. doi: 10.1261/rna.1351608 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lau NC (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862. doi: 10.1126/science.1065062 PubMedCrossRefGoogle Scholar
  66. Lebedeva S, Jens M, Theil K et al (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352. doi: 10.1016/j.molcel.2011.06.008 PubMedCrossRefGoogle Scholar
  67. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469. doi: 10.1038/nature07488 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liu XS, Brutlag DL, Liu JS (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol 20:835–839. doi: 10.1038/nbt717 PubMedCrossRefGoogle Scholar
  69. López de Silanes I, Zhan M, Lal A et al (2004) Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci U S A 101:2987–2992. doi: 10.1073/pnas.0306453101 PubMedCrossRefGoogle Scholar
  70. Majoros WH, Lekprasert P, Mukherjee N et al (2013) MicroRNA target site identification by integrating sequence and binding information. Nat Methods 10:630–633. doi: 10.1038/nmeth.2489 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Manley JL (2013) SELEX to identify protein-binding sites on RNA. Cold Spring Harb Protoc 2013(2):156–163. doi: 10.1101/pdb.prot072934 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mansfield KD, Keene JD (2009) The ribonome: a dominant force in co-ordinating gene expression. Biol Cell 101:169–181. doi: 10.1042/BC20080055 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Martin L, Meier M, Lyons SM et al (2012) Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nat Methods 9:1192–1194. doi: 10.1038/nmeth.2225 PubMedCrossRefGoogle Scholar
  74. Mattaj IW (1993) RNA recognition: a family matter? Cell 73:837–840. doi: 10.1016/0092-8674(93)90265-r PubMedCrossRefGoogle Scholar
  75. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10:1692–1694. doi: 10.1261/rna.7151404 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Miller MR, Robinson KJ, Cleary MD, Doe CQ (2009) TU-tagging: cell type-specific RNA isolation from intact complex tissues. Nat Methods 6:439–441. doi: 10.1038/nmeth.1329 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Moore MJ, Zhang C, Gantman EC et al (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat Protoc 9:263–293. doi: 10.1038/nprot.2014.012 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Morris AR, Mukherjee N, Keene JD (2010) Systematic analysis of posttranscriptional gene expression. Wiley Interdiscip Rev Syst Biol Med 2:162–180. doi: 10.1002/wsbm.54 PubMedCrossRefGoogle Scholar
  79. Mukherjee N, Jacobs NC, Hafner M et al (2014) Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biol 15:R12. doi: 10.1186/gb-2014-15-1-r12 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Munschauer M, Schueler M, Dieterich C, Landthaler M (2014) High-resolution profiling of protein occupancy on polyadenylated RNA transcripts. Methods 65:302–309. doi: 10.1016/j.ymeth.2013.09.017 PubMedCrossRefGoogle Scholar
  81. Ng P, Keich U (2008) GIMSAN: a Gibbs motif finder with significance analysis. Bioinformatics 24:2256–2257. doi: 10.1093/bioinformatics/btn408 PubMedCrossRefGoogle Scholar
  82. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26:182–190. doi: 10.1016/S1046-2023(02)00021-X Google Scholar
  83. Ozer A, Pagano JM, Lis JT (2014) New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Mol Ther Nucleic Acids 3, e183. doi: 10.1038/mtna.2014.34 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Paulus M, Haslbeck M, Watzele M (2004) RNA stem-loop enhanced expression of previously non-expressible genes. Nucleic Acids Res 32:e78. doi: 10.1093/nar/gnh076 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Piñol-Roma S, Choi YD, Matunis MJ, Dreyfuss G (1988) Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev 2:215–227. doi: 10.1101/gad.2.2.215 PubMedCrossRefGoogle Scholar
  86. Query CC, Bentley RC, Keene JD (1989) A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57:89–101. doi: 10.1016/0092-8674(89)90175-x PubMedCrossRefGoogle Scholar
  87. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. doi: 10.1038/nprot.2013.143 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ray D, Kazan H, Chan ET et al (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 27:667–670. doi: 10.1038/nbt.1550 PubMedCrossRefGoogle Scholar
  89. Ray D, Kazan H, Cook KB et al (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–177. doi: 10.1038/nature12311 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rädle B, Rutkowski AJ, Ruzsics Z, et al. (2013) Metabolic labeling of newly transcribed RNA for high resolution gene expression profiling of RNA synthesis, processing and decay in cell culture. J Vis Exp (78):e50195. doi: 10.3791/50195
  91. Rehman S, Gladman JT, Periasamy A et al (2014) Development of an AP-FRET based analysis for characterizing RNA-protein interactions in myotonic dystrophy (DM1). PLoS One 9:e95957. doi: 10.1371/journal.pone.0095957 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ricci EP, Kucukural A, Cenik C et al (2014) Staufen1 senses overall transcript secondary structure to regulate translation. Nat Struct Mol Biol 21:26–35. doi: 10.1038/nsmb.2739 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rio DC (2012) Filter-binding assay for analysis of RNA-protein interactions. Cold Spring Harb Protoc 2012:1078–1081. doi: 10.1101/pdb.prot071449 PubMedCrossRefGoogle Scholar
  94. Rossbach O, Hung L-H, Khrameeva E et al (2014) Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biol 11:146–155. doi: 10.4161/rna.27991 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rybak-Wolf A, Jens M, Murakawa Y et al (2014) A variety of dicer substrates in human and C. elegans. Cell 159:1153–1167. doi: 10.1016/j.cell.2014.10.040 PubMedCrossRefGoogle Scholar
  96. Salim NN, Feig AL (2009) Isothermal titration calorimetry of RNA. Methods 47:198–205. doi: 10.1016/j.ymeth.2008.09.003 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Seelig B, Jäschke A (1999) A small catalytic RNA motif with Diels-Alderase activity. Chem Biol 6:167–176. doi: 10.1016/S1074-5521(99)89008-5 PubMedCrossRefGoogle Scholar
  98. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734. doi: 10.1038/78948 PubMedCrossRefGoogle Scholar
  99. Sievers C, Schlumpf T, Sawarkar R et al (2012) Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res 40:e160. doi: 10.1093/nar/gks697 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Silahtaroglu A (2014) Fluorescence in situ hybridization for detection of small RNAs on frozen tissue sections. Methods Mol Biol 1211:95–102. doi: 10.1007/978-1-4939-1459-3_9 Google Scholar
  101. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. doi: 10.1016/j.bioeng.2007.06.001 PubMedCrossRefGoogle Scholar
  102. Sugimoto Y, König J, Hussain S et al (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol 13:R67. doi: 10.1186/gb-2012-13-8-r67 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sutherland BW, Toews J, Kast J (2008) Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. J Mass Spectrom 43:699–715. doi: 10.1002/jms.1415 PubMedCrossRefGoogle Scholar
  104. Swanson MS, Nakagawa TY, LeVan K, Dreyfuss G (1987) Primary structure of human nuclear ribonucleoprotein particle C proteins: conservation of sequence and domain structures in heterogeneous nuclear RNA, mRNA, and pre-rRNA-binding proteins. Mol Cell Biol 7:1731–1739PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tanke HJ, Dirks RW, Raap T (2005) FISH and immunocytochemistry: towards visualising single target molecules in living cells. Curr Opin Biotechnol 16:49–54. doi: 10.1016/j.copbio.2004.12.001 PubMedCrossRefGoogle Scholar
  106. Tenenbaum SA, Carson CC, Lager PJ, Keene JD (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci U S A 97:14085–14090. doi: 10.1073/pnas.97.26.14085 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Teplova M, Hafner M, Teplov D et al (2013) Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites. Genes Dev 27:928–940. doi: 10.1101/gad.216531.113 Google Scholar
  108. Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. doi: 10.1038/nn.2778 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tome JM, Ozer A, Pagano JM et al (2014) Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat Methods 11:683–688. doi: 10.1038/nmeth.2970 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ule J, Jensen KB, Ruggiu M et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215. doi: 10.1126/science.1090095 PubMedCrossRefGoogle Scholar
  111. Uren PJ, Bahrami-Samani E, Burns SC et al (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28:3013–3020. doi: 10.1093/bioinformatics/bts569 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Vyboh K, Ajamian L, Mouland AJ (2012) Detection of viral RNA by fluorescence in situ hybridization (FISH). J Vis Exp. doi: 10.3791/4002
  113. Wang ET, Cody NAL, Jog S et al (2012) Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150:710–724. doi: 10.1016/j.cell.2012.06.041 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wang T, Xie Y, Xiao G (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol 15:R11. doi: 10.1186/gb-2014-15-1-r11 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wang Z, Kayikci M, Briese M et al (2010) iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol 8:e1000530. doi: 10.1371/journal.pbio.1000530 PubMedPubMedCentralCrossRefGoogle Scholar
  116. White EK, Moore-Jarrett T, Ruley HE (2001) PUM2, a novel murine puf protein, and its consensus RNA-binding site. RNA 7:1855–1866PubMedPubMedCentralGoogle Scholar
  117. Wilson GM (2005) RNA folding and RNA-protein binding analyzed by fluorescence anisotropy and resonance energy transfer. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2005. Springer US, Boston, MA, pp 223–243CrossRefGoogle Scholar
  118. Yang J-H, Li J-H, Shao P et al (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209. doi: 10.1093/nar/gkq1056 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yang Y, Wang Q, Guo D (2008) A novel strategy for analyzing RNA-protein interactions by surface plasmon resonance biosensor. Mol Biotechnol 40:93. doi: 10.1007/s12033-008-9066-3 CrossRefGoogle Scholar
  120. Yang Y-CT, Di C, Hu B et al (2015) CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics 16:51. doi: 10.1186/s12864-015-1273-2 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zarnack K, König J, Tajnik M et al (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152:453–466. doi: 10.1016/j.cell.2012.12.023 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29:607–614. doi: 10.1038/nbt.1873 Google Scholar
  123. Zhang L, Ding L, Cheung TH et al (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613. doi: 10.1016/j.molcel.2007.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Muscle Stem Cells and Gene RegulationNIAMSBethesdaUSA

Personalised recommendations