Skip to main content

Pathophysiology of Castration-Resistant Prostate Cancer

  • Chapter
  • First Online:
Managing Metastatic Prostate Cancer In Your Urological Oncology Practice

Abstract

Androgen-targeted therapy aimed at abrogating androgen receptor (AR) mediated growth is the mainstay of treatment of advanced prostate cancer. Targeting of microtubules (taxane chemotherapy) and androgen signaling (antiandrogens) have survival benefits in patients with metastatic CRPC (mCRPC), but therapeutic resistance invariably develops yielding lethal disease. Addiction of tumor cells in CRPC to AR signaling and constitutively active AR splice variants is the primary driver of this resistance. Multiple mechanisms, including an innate intratumoral feed-back mechanism resulting in increased de novo production of steroids, account for the higher androgen levels in CRPC, despite castrate levels of circulating androgens. The AR “zip code” localization has been placed into a critical targeting position in CRPC, not only by AR signaling inhibitors, but also by microtubule-targeting taxane chemotherapy. This chapter discusses the current understanding of addiction of CRPC to aberrant AR activity via its interactions with other signaling networks and the effect of targeted therapeutics in overcoming cross-resistance in advanced disease towards increasing patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRPC:

Castration resistant prostate cancer

PSA:

Prostate specific antigen

ADT:

Androgen deprivation therapy

DHT:

Dihydrotestosterone

AR:

Androgen receptor

DHEA:

Dehydroepiandrosterone

AD:

Androstenedione

HSP:

Heat shock protein

IAP:

Inhibitors of apoptosis proteins

PTEN:

Phosphatase and tensin homolog

BTG1:

B-Cell translocation gene 1

BCL2:

B-Cell CLL/Lymphoma 2

IGF-1:

Insulin like growth factor 1

KGF:

Keratinocyte growth factor

EGF1:

Epidermal growth factor 1

TIF2:

Transcriptional intermediary factor 2

RTK:

Receptor tyrosine kinase

MAPK:

Mitogen activated protein kinase

STAT:

Signal transducer and activator of transcription

AF-1, 2:

Activating function

NTD:

N-terminal domain

DBD:

DNA binding domain

LBD:

Ligand binding domain

NLS:

Nuclear localization signal

ARV:

Androgen receptor variant

ASO:

Antisense oligonucleotide

LHRH:

Lutenizing hormone-releasing hormone

MAB:

Maximum androgen blockade

CVD:

Cardiovascular disease

IAD:

Intermittent androgen deprivation

FDA:

Food and Drug Administration

SWOG:

Southwest Oncology Group

FOXO1:

Forkhead box O1

HSET:

Human kinesin-14

MCAK:

Mitotic centromere associated kinesin

Src:

Proto-oncogene protein tyrosine kinase Src

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. Huggins C, Hodges CV. Studies on prostatic cancer I: The effect of castration, of estrogen and of androgen injection on serum phosphatase in metastatic carcinoma of the prostate. Cancer Res. 1941;293–297.

    Google Scholar 

  3. Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: Locking up the molecular escape routes. Clin Cancer Res official J Am Assoc Cancer Res. 2009;15:3251–5. doi:10.1158/1078-0432.ccr-08-1171.

    Article  CAS  Google Scholar 

  4. Brawley OW. Prostate cancer epidemiology in the United States. World J Urol. 2012;30:195–200. doi:10.1007/s00345-012-0824-2.

    Article  PubMed  Google Scholar 

  5. Amaral TM, Macedo D, Fernandes I, Costa L. Castration-resistant prostate cancer: Mechanisms, targets, and treatment. Prostate Cancer. 2012;2012:327253. doi:10.1155/2012/327253.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J biol sci. 2014;10:588–95. doi:10.7150/ijbs.8671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hotte SJ, Saad F Current management of castrate-resistant prostate cancer. Curr oncol (Toronto, Ont.). 2010;17 Suppl 2:72–79.

    Google Scholar 

  8. Vis AN, Schroder FH. Key targets of hormonal treatment of prostate cancer Part 1: The androgen receptor and steroidogenic pathways. BJU Int. 2009;104:438–448. doi:10.1111/j.1464-410X.2009.08695.x.

    Google Scholar 

  9. McKenzie S, Kyprianou N. Apoptosis evasion: The role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem. 2006;97:18–32. doi:10.1002/jcb.20634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: Mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013;32:5501–11. doi:10.1038/onc.2013.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saraon P, Jarvi K, Diamandis EP. Molecular alterations during progression of prostate cancer to androgen independence. Clin Chem. 2011;57:1366–75. doi:10.1373/clinchem.2011.165977.

    Article  CAS  PubMed  Google Scholar 

  12. Debes JD, Tindall DJ. Mechanisms of androgen-refractory prostate cancer. N Engl J Med. 2004;351:1488–90. doi:10.1056/NEJMp048178.

    Article  CAS  PubMed  Google Scholar 

  13. Chang KH, et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc Natl Acad Sci USA. 2011;108:13728–33. doi:10.1073/pnas.1107898108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther. 2013;140:223–38. doi:10.1016/j.pharmthera.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  15. Montgomery RB, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: A mechanism for castration-resistant tumor growth. Cancer Res. 2008;68:4447–54. doi:10.1158/0008-5472.can-08-0249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Locke JA, et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 2008;68:6407–15. doi:10.1158/0008-5472.can-07-5997.

    Article  CAS  PubMed  Google Scholar 

  17. Leon CG, et al. Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate. 2010;70:390–400. doi:10.1002/pros.21072.

    CAS  PubMed  Google Scholar 

  18. Bansal D, Undela K, D’Cruz S, Schifano F. Statin use and risk of prostate cancer: A meta-analysis of observational studies. PLoS ONE. 2012;7:e46691. doi:10.1371/journal.pone.0046691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mark Garzotto M. Pre-operative statin therapy versus placebo in human prostate cancer. 2015. https://clinicaltrials.gov/ct2/show/NCT00572468.

  20. Zielinski RR, Eigl BJ, Chi KN. Targeting the apoptosis pathway in prostate cancer. Cancer J (Sudbury, Mass.). 2013;19:79–89. doi:10.1097/PPO.0b013e3182801cf7.

    Google Scholar 

  21. Sun A, et al. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Prostate. 2008;68:453–61. doi:10.1002/pros.20723.

    Article  CAS  PubMed  Google Scholar 

  22. Tamaki H, et al. Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition. Oncotarget. 2014;5:11399–412.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kyprianou N. Molecular exploitation of apoptosis pathways in prostate cancer. Imperial College Press; 2012.

    Google Scholar 

  24. Lu K, et al. MicroRNA-19a regulates proliferation and apoptosis of castration-resistant prostate cancer cells by targeting BTG1. FEBS Lett. 2015;589:1485–90. doi:10.1016/j.febslet.2015.04.037.

    Article  CAS  PubMed  Google Scholar 

  25. Culig Z, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 1994;54:5474–8.

    CAS  PubMed  Google Scholar 

  26. Signoretti S, et al. Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst. 2000;92:1918–25.

    Article  CAS  PubMed  Google Scholar 

  27. Schweizer L, et al. The androgen receptor can signal through Wnt/beta-catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC cell biology. 2008;9:4. doi:10.1186/1471-2121-9-4.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Malinowska K, et al. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr Relat Cancer. 2009;16:155–69. doi:10.1677/erc-08-0174.

    Article  CAS  PubMed  Google Scholar 

  29. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol: Official J Am Soc Clin Oncol. 2002;20:3001–15.

    Article  CAS  Google Scholar 

  30. Yuan X, et al. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33:2815–25. doi:10.1038/onc.2013.235.

    Article  CAS  PubMed  Google Scholar 

  31. Bennett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC. Molecular cell biology of androgen receptor signalling. Int J Biochem cell Biol. 2010;42:813–27. doi:10.1016/j.biocel.2009.11.013.

    Article  CAS  PubMed  Google Scholar 

  32. Martin SK, Kamelgarn M, Kyprianou N. Cytoskeleton targeting value in prostate cancer treatment. Am J Clin Exp Urol. 2014;2:15–26.

    PubMed  PubMed Central  Google Scholar 

  33. Cunha GR, Cooke PS, Kurita T. Role of stromal-epithelial interactions in hormonal responses. Arch Histol Cytol. 2004;67:417–34.

    Article  CAS  PubMed  Google Scholar 

  34. Niu Y, et al. Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci USA. 2008;105:12188–93. doi:10.1073/pnas.0804701105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Linja MJ, et al. Amplification and over expression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 2001;61:3550–5.

    CAS  PubMed  Google Scholar 

  36. Ford OH 3rd, Gregory CW, Kim D, Smitherman AB, Mohler JL. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J Urol. 2003;170:1817–21. doi:10.1097/01.ju.0000091873.09677.f4.

    Article  CAS  PubMed  Google Scholar 

  37. Wyatt AW, Gleave ME. Targeting the adaptive molecular landscape of castration-resistant prostate cancer. EMBO Mol Med. 2015;. doi:10.15252/emmm.201303701.

    PubMed  PubMed Central  Google Scholar 

  38. Gregory CW, Johnson RT Jr, Mohler JL, French FS, Wilson EM. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 2001;61:2892–8.

    CAS  PubMed  Google Scholar 

  39. Chen CD, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9. doi:10.1038/nm972.

    Article  PubMed  Google Scholar 

  40. Taplin ME, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995;332:1393–8. doi:10.1056/nejm199505253322101.

    Article  CAS  PubMed  Google Scholar 

  41. Waltering KK, Urbanucci A, Visakorpi T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol. 2012;360:38–43. doi:10.1016/j.mce.2011.12.019.

    Article  CAS  PubMed  Google Scholar 

  42. Koochekpour S. Androgen receptor signaling and mutations in prostate cancer. Asian J Androl. 2010;12:639–57. doi:10.1038/aja.2010.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Egan A, et al. Castration-resistant prostate cancer: Adaptive responses in the androgen axis. Cancer Treat Rev. 2014;40:426–33. doi:10.1016/j.ctrv.2013.09.011.

    Article  CAS  PubMed  Google Scholar 

  44. Korpal M, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 2013;3:1030–43. doi:10.1158/2159-8290.cd-13-0142.

    Article  CAS  PubMed  Google Scholar 

  45. Bergerat JP, Ceraline J. Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat. 2009;30:145–57. doi:10.1002/humu.20848.

    Article  CAS  PubMed  Google Scholar 

  46. Hay CW, McEwan IJ. The impact of point mutations in the human androgen receptor: Classification of mutations on the basis of transcriptional activity. PLoS ONE. 2012;7:e32514. doi:10.1371/journal.pone.0032514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu R, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 2012;72:3457–62. doi:10.1158/0008-5472.can-11-3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gillis JL, et al. Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors. Oncotarget. 2013;4:691–704.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Antonarakis ES, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38. doi:10.1056/NEJMoa1315815.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yamamoto Y, et al. Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth. Clin Cancer Res: Official J Am Assoc Cancer Res. 2015;21:1675–1687. doi:10.1158/1078-0432.ccr-14-1108.

    Google Scholar 

  51. Thomas BC, Neal DE. Androgen deprivation treatment in prostate cancer. BMJ (Clinical research ed.) 2013;346:e8555. doi:10.1136/bmj.e8555 .

    Google Scholar 

  52. Pagliarulo V, et al. Contemporary role of androgen deprivation therapy for prostate cancer. Eur Urol. 2012;61:11–25. doi:10.1016/j.eururo.2011.08.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Treatment and survival of patients with cancer of the prostate. The veterans administration co-operative urological research group. Surg, Gynecol Obstet. 1967;24:1011–1017.

    Google Scholar 

  54. Heidenreich A, et al. EAU guidelines on prostate cancer part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65:467–79. doi:10.1016/j.eururo.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  55. Allan CA, Collins VR, Frydenberg M, McLachlan RI, Matthiesson KL. Androgen deprivation therapy complications. Endocr Relat Cancer. 2014;21:T119–29. doi:10.1530/erc-13-0467.

    Article  CAS  PubMed  Google Scholar 

  56. Lu-Yao GL, et al. Fifteen-year survival outcomes following primary androgen-deprivation therapy for localized prostate cancer. JAMA Intern Med. 2014;174:1460–7. doi:10.1001/jamainternmed.2014.3028.

    Article  PubMed  Google Scholar 

  57. Studer UE, et al. Using PSA to guide timing of androgen deprivation in patients with T0-4 N0-2 M0 prostate cancer not suitable for local curative treatment (EORTC 30891). Eur Urol. 2008;53:941–9. doi:10.1016/j.eururo.2007.12.032.

    Article  PubMed  Google Scholar 

  58. Fitzpatrick JM, de Wit R. Taxane mechanisms of action: Potential implications for treatment sequencing in metastatic castration-resistant prostate cancer. Eur Urol. 2014;65:1198–204. doi:10.1016/j.eururo.2013.07.022.

    Article  CAS  PubMed  Google Scholar 

  59. Seruga B, Tannock IF. Chemotherapy-based treatment for castration-resistant prostate cancer. J Clin oncol: Official J Am Soc Clin Oncol. 2011;29:3686–94. doi:10.1200/jco.2010.34.3996.

    Article  CAS  Google Scholar 

  60. Tannock IF, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–12. doi:10.1056/NEJMoa040720.

    Article  CAS  PubMed  Google Scholar 

  61. Harrington JA, Jones RJ. Management of metastatic castration-resistant prostate cancer after first-line docetaxel. Eur J cancer (Oxford, England: 1990) 2011;47:2133–2142. doi:10.1016/j.ejca.2011.04.036.

    Google Scholar 

  62. El-Amm J, Aragon-Ching JB. The changing landscape in the treatment of metastatic castration-resistant prostate cancer. Ther Adv Med Oncol. 2013;5:25–40. doi:10.1177/1758834012458137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Darshan MS, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011;71:6019–29. doi:10.1158/0008-5472.can-11-1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mistry SJ, Oh WK. New paradigms in microtubule-mediated endocrine signaling in prostate cancer. Mol Cancer Ther. 2013;12:555–66. doi:10.1158/1535-7163.mct-12-0871.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu ML, et al. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 2010;70:7992–8002. doi:10.1158/0008-5472.can-10-0585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gan L, et al. Inhibition of the androgen receptor as a novel mechanism of taxol chemotherapy in prostate cancer. Cancer Res. 2009;69:8386–94. doi:10.1158/0008-5472.can-09-1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu P, Li S, Gan L, Kao TP, Huang H. A transcription-independent function of FOXO1 in inhibition of androgen-independent activation of the androgen receptor in prostate cancer cells. Cancer Res. 2008;68:10290–9. doi:10.1158/0008-5472.can-08-2038.

    Article  CAS  PubMed  Google Scholar 

  68. Mezynski J, et al. Antitumour activity of docetaxel following treatment with the CYP17A1 inhibitor abiraterone: Clinical evidence for cross-resistance? Ann Oncol: Official J Eur Soc Med Oncol ESMO. 2012;23:2943–7. doi:10.1093/annonc/mds119.

    Article  CAS  Google Scholar 

  69. Thadani-Mulero M, et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res. 2014;74:2270–82. doi:10.1158/0008-5472.can-13-2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin S, Pu H, Penticuff JC, Cao Z, Horbinski C, Kyprianou N. Multinucleation and mesenchymal epithelial transition mediate resistance to cabazitaxel chemotherapy and antiandrogens in advanced prostate cancer. Cancer Res. 2015.

    Google Scholar 

  71. van Soest RJ, et al. Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel, but not cabazitaxel castration-resistant prostate cancer. Eur Urol. 2015;67:981–5. doi:10.1016/j.eururo.2014.11.033.

    Article  PubMed  Google Scholar 

  72. Ogden A, et al. Quantitative multi-parametric evaluation of centrosome declustering drugs: Centrosome amplification, mitotic phenotype, cell cycle and death. Cell Death Dis. 2014;5:e1204. doi:10.1038/cddis.2014.164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sircar K, et al. Mitosis phase enrichment with identification of mitotic centromere-associated kinesin as a therapeutic target in castration-resistant prostate cancer. PLoS ONE. 2012;7:e31259. doi:10.1371/journal.pone.0031259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De S, Cipriano R, Jackson MW, Stark GR. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res. 2009;69:8035–42. doi:10.1158/0008-5472.can-09-1224.

    Article  CAS  PubMed  Google Scholar 

  75. Colello D, et al. Androgen and Src signaling regulate centrosome activity. J Cell Sci. 2010;123:2094–102. doi:10.1242/jcs.057505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tan MH, Li J, Xu HE, Melcher K, Yong EL. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 2015;36:3–23. doi:10.1038/aps.2014.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Balbas MD, et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. ELife 2013, 2:e00499. doi:10.7554/eLife.00499

  78. Clegg NJ, et al. ARN-509: A novel antiandrogen for prostate cancer treatment. Cancer Res. 2012;72:1494–503. doi:10.1158/0008-5472.can-11-3948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moilanen AM, et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep. 2015;5. doi:10.1038/srep12007.

  80. Fizazi K, et al. Activity and safety of ODM-201 in patients with progressive metastatic castration-resistant prostate cancer (ARADES): An open-label phase 1 dose-escalation and randomised phase 2 dose expansion trial. Lancet Oncol. 2014;15:975–85. doi:10.1016/s1470-2045(14)70240-2.

    Article  CAS  PubMed  Google Scholar 

  81. Brand LJ, et al. EPI-001 is a selective peroxisome proliferator-activated receptor-gamma modulator with inhibitory effects on androgen receptor expression and activity in prostate cancer. Oncotarget. 2015;6:3811–24.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Myung JK, et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J Clin Investig. 2013;123:2948–60. doi:10.1172/JCI66398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Kyprianou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Penticuff, J.C., Kyprianou, N. (2016). Pathophysiology of Castration-Resistant Prostate Cancer. In: Balaji, K. (eds) Managing Metastatic Prostate Cancer In Your Urological Oncology Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-31341-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31341-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31339-9

  • Online ISBN: 978-3-319-31341-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics