Skip to main content

Martensitic Transformation of NiMnGa Shape Memory Alloys Thin Films Studied by Flash DSC

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

The martensitic transformation of a magnetic shape memory alloy of composition Ni54Mn24Ga22 has been studied by Flash DSC at 10,000 K/s heating rate. The alloy was deposited directly onto the Flash DSC chip by magnetron sputtering through a metallic mask. The chip was heated at 500 °C during the deposition in order to obtain the correct structure of the films. Adherence of the films to the chip was possible only by depositing a thin Cr buffer layer. The transformation can be detected without problem and the associated enthalpy determined. The transformation temperatures are similar to the values obtained in a witness film. The enthalpy, however, is lower than the corresponding to the bulk alloy, but no reference film of the same characteristics is available for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc 54:3819

    Article  Google Scholar 

  3. Bramfitt JE, Hess RL (1994) A novel heat-activated recoverable temporary stent (HARTS system). In: Pelton AR, Hodgson D, Duerig T (eds) Proc. SMST-94: the first international conference on shape memory and superelastic technologies, vol 1. MIAS, Monterey, California, pp 435–442

    Google Scholar 

  4. Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sensor Actuat 158:149–160

    Article  Google Scholar 

  5. Nishiyama Z (2012) Martensitic transformation. Elsevier, Amsterdam

    Google Scholar 

  6. Greninger AB, Mooradian VG (1938) Strain transformation in metastable beta copper-zinc and beta copper-tin alloys. AIME Trans 128:337

    Google Scholar 

  7. Wang FE, Buehler WJ, Pickart SJ (1965) Crystal structure and unique martensitic transition of NiTi. J Appl Phys 36:3232

    Article  Google Scholar 

  8. Kokorin VV, Chernenko VA (1989) The martensitic transformation in a ferromagnetic Heusler alloy. Phys Met Metall 68:111

    Google Scholar 

  9. Chernenko VA, Kokorin VV (1992) Ni2MnGa as a new ferromagnetic ordered shape memory alloy. Proceedings of the international conference on martens-itic transformations 1992. Monterey Institute for Advanced Studies, Monterey, CA, pp 1205–1210

    Google Scholar 

  10. Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69:1966

    Article  Google Scholar 

  11. Koeda J, Nakamura Y, Fukuda T, Kakeshita T, Takeuchi T, Kishio K (2001) Giant magnetostriction of Fe-Pd alloy single crystal exhibiting martensitic transformation. Trans Mater Res Soc Jpn 26:215

    Google Scholar 

  12. Thang PD, Bruck E, Buschow KHJ, de Boer FR (2003) Phase transition, thermodynamic properties, and microstructure of Fe-Pt based alloys. J Appl Phys 93:7586

    Article  Google Scholar 

  13. Sutou Y, Ohnuma I, Kainuma R, Ishida K (1998) Ordering and martensitic transformations of Ni2AlMn Heusler alloys. Metall Mater Trans A 29:2225

    Article  Google Scholar 

  14. Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K (2001) Magnetic and martensitic phase transformations in a Ni54Ga27Fe19 alloy. Appl Phys Lett 79:3290

    Article  Google Scholar 

  15. Masdeu F, Pons J, Segui C, Cesari E, Dutkiewicz J (2005) Some features of Ni-Fe-Ga shape memory alloys under compression. J Magn Magn Mater 290:816

    Article  Google Scholar 

  16. Bernard F, Delobelle P, Rousselot C, Hirsinger L (2009) Microstructural, mechanical and magnetic properties of shape memory alloy Ni55Mn23Ga22 thin films deposited by radio-frequency magnetoron sputtering. Thin Solid Films 518:399

    Article  Google Scholar 

  17. Golub VO, Vovk AY, Malkinski L, O’Connor CJ, Wang Z, Tang J (2004) Anomalous magnetoresistance in NiMnGa thin films. J Appl Phys 96:3865

    Article  Google Scholar 

  18. Jenkins CA, Ramesh R, Huth M, Eichhorn T, Pörsch P, Elmers HJ, Jakob G (2008) Growth and magnetic control of twinning structure in thin films of Heusler shape memory compound Ni2MnGa. Appl Phys Lett 93:234101

    Article  Google Scholar 

  19. Jakob G, Eichhorn T, Kallmayer M, Elmers HJ (2007) Martensite Transition and Microscopic Magnetism of Epitaxial Ni2MnGa Films, MRS Symp. Magnetic Shape Mem Alloy. Cambridge University Press, Cambridge

    Google Scholar 

  20. Besseghini S, Gambardella A, Chernenko VA, Hagler M, Pohl C, Müllner P, Ohtsuka M, Doyle S (2008) Transformation behavior of Ni-Mn-Ga/Si(100) thin film composites with different film thicknesses. Eur Phys J Spec Top 158:179

    Article  Google Scholar 

  21. Doyle S, Chernenko VA, Besseghini S, Gambardella A, Kohl M, Müllner P, Ohtsuka M (2008) Residual stress in Ni-Mn-Ga thin films deposited on different substrates. Eur Phys J Spec Top 158:99

    Article  Google Scholar 

  22. Chernenko VA, Ohtsuka M, Kohl M, Khovailo VV, Takagi T (2005) Transformation behavior of Ni–Mn–Ga thin films. Smart Mater Struct 14 (S245)

    Google Scholar 

  23. Thompson CV (2000) Structure evolution during processing of polycrystalline films. Annu Rev Mater Sci 30:159

    Article  Google Scholar 

  24. Dubowik J, Kudryavtsev YV, Lee YP (2004) Martensitic transformation in Ni2MnGa films: a ferromagnetic resonance study. J Appl Phys 95:2912

    Article  Google Scholar 

  25. Chernenko VA, Hagler M, Müllner P, Kniazkyi VM, L’vov VA, Ohtsuka M, Besseghini S (2007) Magnetic susceptibility of martensitic Ni–Mn–Ga film. J Appl Phys 101:53909

    Article  Google Scholar 

  26. Mavroidis C (2002) Development of advanced actuators using shape memory alloys and electrorheological fluids. Res Nondestr Eval 14:1–32

    Article  Google Scholar 

  27. Jeon YB, Sood R, Jeong JH, Kim SG (2005) MEMS power generator with transverse mode thin film PZT. Sensor Actuat A Phys 122:16

    Article  Google Scholar 

  28. Moffett MB, Clark AE, Wun-Fogle M, Lindberg JF, Teter JP, McLaughlin EA (1991) Characterization of Terfenol-D for magnetostrictive transducers, J Acoust Soc Am 89:1448

    Article  Google Scholar 

  29. Tong HC, Wayman CM (1975) Thermodynamics of thermoelastic martensitic transformations. Acta Metall 23:209

    Article  Google Scholar 

  30. Aseguinolaza IR (2014) Thin films of ferromagnetic shape memory alloys. Ph.D. thesis, University of the Basque Country (UPV/EHU) Bilbao 2014

    Google Scholar 

  31. Mota-Cobián A (2013) Ultrafast calorimetry of thin films of ferromagnetic shape memory alloys. B.Sc. thesis, University of the Basque Country (UPV/EHU) Bilbao

    Google Scholar 

  32. Aseguinolaza IR, Orue I, Svalov AV, Chernenko VA, Besseghini S, Barandiaran JM (2012) Fabrication conditions and transformation behavior of epitaxial Ni–Mn–Ga thin films. J Mater Sci 47:3658

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Andrey Svalov (Department of Electricity and Electronics UPV/EHU, Bilbao, Spain), for his assistance with the Sputtering, to Iñaki Elorriaga, Mettler-Toledo representative in Bilbao, for providing the Flash DSC chips free of charge, and Prof. Angel Alegría and Dr. Daniele Cagialosi (Institute of Physics of Materials, UPV/EHU-CSIC, San Sebastian, Spain) for allowing to carry out the Flash DSC measurements in their instrument. Funding of the Spanish Ministry of Economy and Competitiveness (MINECO) under grants MAT2011-28217 and MAT2014-56116-C4-1-3-4-R, and Basque Industry Department under the ACTIMAT project is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Barandiaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barandiaran, J.M., Aseguinolaza, I.R., Mota-Cobián, A., Chernenko, V.A. (2016). Martensitic Transformation of NiMnGa Shape Memory Alloys Thin Films Studied by Flash DSC. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_23

Download citation

Publish with us

Policies and ethics