Skip to main content

Asymptotic Behavior of Linear Almost Periodic Differential Equations

  • 827 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 157)

Abstract

The present paper is concerned with strong stability of solutions of non-autonomous equations of the form \(\dot{u}(t) = A(t)u(t)\), where A(t) is an unbounded operator in a Banach space depending almost periodically on t. A general condition on strong stability is given in terms of Perron conditions on the solvability of the associated inhomogeneous equation.

Keywords

  • Strong stability
  • Non-autonomous equation
  • Almost periodicity
  • Evolution semigroup
  • Perron type conditions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-31323-8_7
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-31323-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  1. Arendt, W., Batty, C.J.K.: Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line. Bull. Lond. Math. Soc. 31, 291–304 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Rabiger, F., Sourour, A.: Spectral properties of the operator equation AX + XB = Y. Q. J. Math. Oxford Ser. (2) 45 (178), 133–149 (1994)

    Google Scholar 

  3. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, vol. 96. Birkhäuser Verlag, Basel (2001)

    Google Scholar 

  4. Ballotti, M.E., Goldstein, J.A., Parrott, M.E.: Almost periodic solutions of evolution equations. J. Math. Anal. Appl. 138, 522–536 (1989)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Basit, B.: Harmonic analysis and asymptotic behavior of solutions to the abstract Cauchy problem. Semigroup Forum 54, 58–74 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Batty, C.J.K., Van Neerven, J., Räbiger, F.: Local spectra and individual stability of uniform bounded C 0-semigroups. Trans. Am. Math. Soc. 350, 2071–2085 (1998)

    CrossRef  MATH  Google Scholar 

  7. Boumenir, A., Van Minh, N., Kim Tuan, V.: Frequency modules and nonexistence of quasi-periodic solutions of nonlinear evolution equations. Semigroup Forum 76, 58–70 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  9. Chill, R., Tomilov, Y.: Stability of operators semigroups: ideas and results. In: Perspectives in Operator Theory, vol. 75, pp. 71–109. Banach Center Publications, Polish Academy Science, Warszawa (2007)

    Google Scholar 

  10. Ellis, R., Johnson, R.A.: Topological dynamics and linear differential systems. J. Differ. Equ. 44, 21–39 (1982)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Fink, A.M.: Almost Periodic Differential Equations. Springer, Berlin/Heidelberg/New York (1974)

    CrossRef  MATH  Google Scholar 

  12. Hino, Y., Naito, T., Van Minh, N., Shin, J.S.: Almost Periodic Solutions of Differential Equations in Banach Spaces. Taylor & Francis, London/New York (2002)

    MATH  Google Scholar 

  13. Johnson, R.A., Sell, G.R.: Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems. J. Differ. Equ. 41, 262–288 (1981)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Moscow University Publishing House, Moscow (1978). English translation by Cambridge University Press, Cambridge, UK (1982)

    Google Scholar 

  15. Murakami, S., Naito, T., Van Minh, N.: Evolution semigroups and sums of commuting operators: a new approach to the admissibility theory of function spaces. J. Differ. Equ. 164, 240–285 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Naito, T., Van Minh, N.: Evolutions semigroups and spectral criteria for almost periodic solutions of periodic evolution equations. J. Differ. Equ. 152, 358–376 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    CrossRef  MATH  Google Scholar 

  18. Preda, C.: \((L^{p}(\mathbb{R}_{+},X),L^{q}(\mathbb{R}_{+},X))\)-admissibility and exponential dichotomies of cocycles. J. Differ. Equ. 249, 578–598 (2010)

    Google Scholar 

  19. Preda, P., Pogan, A., Preda, C.: Schäffer spaces and exponential dichotomy for evolutionary processes. J. Differ. Equ. 230, 378–391 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Preda, C., Preda, P., Craciunescu, A.: Criterions for detecting the existence of the exponential dichotomies in the asymptotic behavior of the solutions of variational equations. J. Funct. Anal. 258, 729–757 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Quoc Phong, V.: Stability and almost periodicity of trajectories of periodic processes. J. Differ. Equ. 115, 402–415 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Sacker, R.J., Sell, G.R.: A spectral theory for linear differential systems. J. Differ. Equ. 27, 320–358 (1978)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Thieu Huy, N.: Exponentially dichotomous operators and exponential dichotomy of evolution equations on the half-line. Int. Equ. Oper. Theory 48, 497–510 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Thieu Huy, N.: Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. J. Funct. Anal. 235, 330–354 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. Van Minh, N.: Asymptotic behavior of individual orbits of discrete systems. Proc. Am. Math. Soc. 137, 3025–3035 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Van Minh, N.: A spectral theory of continuous functions and the Loomis-Arendt-Batty-Vu theory on the asymptotic behavior of solutions of evolution equations. J. Differ. Equ. 247, 1249–1274 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Van Minh, N., Räbiger, F., Schnaubelt, R.: On the exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Int. Equ. Oper. Theory 32, 332–353 (1998)

    CrossRef  MathSciNet  MATH  Google Scholar 

  28. van Neerven, J.M.A.M.: The asymptotic behaviour of semigroups of linear operator. In: Operator Theory, Advances and Applications, vol. 88. Birkhäuser Verlag, Basel /Boston/Berlin (1996)

    Google Scholar 

Download references

Acknowledgements

The first author was supported by the Vietnamese Ministry of Education and Training (MOET) Scholarship Scheme (Project 322) and the Graduate Academy (GA) of the TU Dresden (PSPElement: F-00361-553-52A-2330000) in accordance with the funding regulations of the German Research Foundation (DFG). The second author was supported by DFG under grant number Si801/6-1 and NAFOSTED under grant number 101.02-2011.47.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Minh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dieu, B.X., Duc, L.H., Siegmund, S., Van Minh, N. (2016). Asymptotic Behavior of Linear Almost Periodic Differential Equations. In: Toni, B. (eds) Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-31323-8_7

Download citation