Skip to main content

Coalescing Complex Planar Stationary Points

  • Conference paper
  • First Online:
  • 880 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 157))

Abstract

Among all bifurcation behaviors of analytic parametric families of real planar vector fields, those that stand out most prominently are confluences of distinct stationary points. The qualitative change is so drastic that in some classes of families (e.g., fold-like bifurcations) the stationary points leave the real plane altogether and slip into the complex plane. Although they disappear from the real domain they continue to organize the dynamics, and studying complex planar vector fields becomes a necessity even for real bifurcations.Our main concern is to describe à la Martinet-Ramis the analytical classification of generic holomorphic families unfolding a saddle-node vector field, and to relate this classification both to the dynamics of individual members of the family and to analytic properties of the saddle-node. For instance the problem of the existence of an analytic center-manifold for the saddle-node is characterized in terms of persistence (as the parameter tends to the bifurcation value) of heteroclinic connections between stationary points.We emphasize the geometric aspect of the classification. Complex trajectories are connected real surfaces allowing for richer geometric constructions as compared to 1-dimensional real trajectories. The trajectories are split by a finite collection of open “fibred squid sectors,” attached by spirals to stationary points within their adherence. The sectors are carved in such a way that one can construct an analytic and bounded conjugacy between the vector field and its formal normal form. The invariants of classification are obtained as transition maps of overlapping such normalization charts. Since we can perform this sectorial normalization analytically in the parameter, by restricting its values to “cells” covering the parameter space minus the bifurcation value, the resulting finite collection of functional invariants is analytic on parameter cells and continuous on their adherence. In that sense it “unfolds” Martinet-Ramis invariant of the saddle-node.The inverse problem (or realization) is addressed in the case of a persistent heteroclinic connections and provides unique normal forms (universal family for the analytic classification). We particularly show that in general the invariant cannot depend holomorphically on the parameter over a full neighborhood of the bifurcation value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Birkhoff, G.D.: Déformations analytiques et fonctions auto-équivalentes. Ann. Inst. H. Poincaré 9, 51–122 (1939)

    MathSciNet  MATH  Google Scholar 

  2. Branner, B., Dias, K.: Classification of complex polynomial vector fields in one complex variable. J. Differ. Equ. Appl. 16 (5–6), 463–517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Briot, C., Bouquet, C.: Recherches sur les propriétés des fonctions définies par des équations différentielles. Journal de l’École Polytechnique 36, 133–198 (1856)

    Google Scholar 

  4. Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Springer Series in Soviet Mathematics. Springer, Berlin (1989). Part I. The local method of nonlinear analysis of differential equations. Part II. The sets of analyticity of a normalizing transformation. Translated from the Russian by William Hovingh and Courtney S. Coleman, With an introduction by Stephen Wiggins

    Google Scholar 

  5. Cerveau, D., Moussu, R.: Groupes d’automorphismes de (C, 0) et équations différentielles ydy + ⋯ = 0. Bull. Soc. Math. Fr. 116 (4), 459–488 (1988)

    Google Scholar 

  6. Dulac, H.: Recherches sur les points singuliers des équations différentielles. Journal de l’École Polytechnique 2 (9), 1–125 (1904)

    MATH  Google Scholar 

  7. Dulac, H.: Sur les points singuliers d’une équation différentielle. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3) 1, 329–379 (1909)

    Google Scholar 

  8. Elizarov, P.M.: Tangents to moduli maps. In: Nonlinear Stokes Phenomena. Advances in Soviet Mathematics, vol. 14, pp. 107–138. American Mathematical Society, Providence, RI (1993)

    Google Scholar 

  9. Fauvet, F.: Résurgence et bifurcations dans des familles à un paramètre. C. R. Acad. Sci. Paris Sér. I Math. 315 (12), 1283–1286 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Glutsyuk, A.A.: Confluence of singular points and the nonlinear Stokes phenomenon. Tr. Mosk. Mat. Obs. 62, 54–104 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Hukuhara, M., Kimura, T., Matuda, T.: Equations différentielles ordinaires du premier ordre dans le champ complexe. In: Publications of the Mathematical Society of Japan, vol. 7. Mathematical Society of Japan, Tokyo (1961)

    Google Scholar 

  12. Hurtubise, J., Lambert, C., Rousseau, C.: Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank k. Mosc. Math. J. 14 (2), 309–338, 427 (2014)

    Google Scholar 

  13. Klimeš, M.: Analytic classification of families of linear differential systems unfolding a resonant irregular singularity. Preprint (2013). http://arxiv.org/abs/1301.5228

  14. Klimeš, M.: Confluence of singularities of nonlinear differential equations via Borel–Laplace transformations. J. Dyn. Control. Syst. 22 (2), 285–324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lambert, C., Rousseau, C.: The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation. J. Differ. Equ. 244 (10), 2641–2664 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lambert, C., Rousseau, C.: Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank 1. Mosc. Math. J. 12 (1), 77–138, 215 (2012)

    Google Scholar 

  17. Lambert, C., Rousseau, C.: Moduli space of unfolded differential linear systems with an irregular singularity of Poincaré rank 1. Mosc. Math. J. 13 (3), 529–550, 553–554 (2013)

    Google Scholar 

  18. Loray, F.: Dynamique des groupes d’automorphismes de C, 0. Bol. Soc. Mat. Mexicana (3) 5 (1), 1–23 (1999)

    Google Scholar 

  19. Mardešić, P., Roussarie, R., Rousseau, C.: Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Mosc. Math. J. 4 (2), 455–502, 535 (2004)

    Google Scholar 

  20. Martinet, J.: Remarques sur la bifurcation nœud-col dans le domaine complexe. Astérisque 150–151, 131–149, 186 (1987). Singularités d’équations différentielles (Dijon, 1985)

    Google Scholar 

  21. Martinet, J., Ramis, J.-P.: Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Inst. Hautes Études Sci. Publ. Math. 55, 63–164 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mattei, J.-F., Moussu, R.: Holonomie et intégrales premières. Ann. Sci. École Norm. Sup. (4) 13 (4), 469–523 (1980)

    Google Scholar 

  23. Remoundos, G.: Contribution à la théorie des singularités des équations différentielles du premier ordre. Bull. Soc. Math. Fr. 36, 185–194 (1908)

    MathSciNet  MATH  Google Scholar 

  24. Rousseau, C.: Modulus of orbital analytic classification for a family unfolding a saddle-node. Mosc. Math. J. 5 (1), 245–268 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Rousseau, C.: Normal forms for germs of analytic families of planar vector fields unfolding a generic saddle-node or resonant saddle. In: Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, pp. 227–245. American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  26. Rousseau, C.: The moduli space of germs of generic families of analytic diffeomorphisms unfolding of a codimension one resonant diffeomorphism or resonant saddle. J. Differ. Equ. 248 (7), 1794–1825 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rousseau, C., Christopher, C.: Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle. Ann. Inst. Fourier (Grenoble) 57 (1), 301–360 (2007)

    Google Scholar 

  28. Rousseau, C., Teyssier, L.: Analytical moduli for unfoldings of saddle-node vector fields. Mosc. Math. J. 8 (3), 547–614, 616 (2008)

    Google Scholar 

  29. Rousseau, C., Teyssier, L.: Analytical normal forms for purely convergent unfoldings of complex planar saddle-node vector fields (preprint, 2015)

    Google Scholar 

  30. Schäfke, R., Teyssier, L.: Analytic normal forms for convergent saddle-node vector fields. Ann. Inst. Fourier 65 (3), 933–974 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Teyssier, L.: Analytical classification of singular saddle-node vector fields. J. Dyn. Control Syst. 10 (4), 577–605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Teyssier, L.: Équation homologique et cycles asymptotiques d’une singularité nœud-col. Bull. Sci. Math. 128 (3), 167–187 (2004)

    Article  MathSciNet  Google Scholar 

  33. Teyssier, L.: Examples of non-conjugated holomorphic vector fields and foliations. J. Differ. Equ. 205 (2), 390–407 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Teyssier, L.: Analyticity in spaces of convergent power series and applications. Mosc. Math. J. 15 (3), 527–592 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Teyssier, L.: Germes de feuilletages présentables du plan complexe. Bull. Braz. Math. Soc. 46 (2), 275–329 (2015)

    Article  MathSciNet  Google Scholar 

  36. Voronin, S.M., Meshcheryakova, Y.I.: Analytic classification of germs of holomorphic vector fields with a degenerate elementary singular point. Vestnik Chelyab. Univ. Ser. 3 Mat. Mekh. Inform. 3 (9), 16–41 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Teyssier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Teyssier, L. (2016). Coalescing Complex Planar Stationary Points. In: Toni, B. (eds) Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-31323-8_22

Download citation

Publish with us

Policies and ethics