Skip to main content

Concurrent Alignment of Multiple Anonymized Social Networks with Generic Stable Matching

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 446))

Abstract

Users nowadays are normally involved in multiple (usually more than two) online social networks simultaneously to enjoy more social network services. Some of the networks that users are involved in can share common structures either due to the analogous network construction purposes or because of the similar social network characteristics. However, the social network datasets available in research are usually pre-anonymized and accounts of the shared users in different networks are mostly isolated without any known connections. In this paper, we want to identify such connections between the shared users’ accounts in multiple social networks (which are called the anchor links), and the problem is formally defined as the M-NASA (Multiple Anonymized Social Networks Alignment) problem. M-NASA is very challenging to address due to (1) the lack of known anchor links to build models, (2) the studied networks are anonymized, where no users’ personal profile or attribute information is available, and (3) the “transitivity law” and the “one-to-one property” based constraints on anchor links. To resolve these challenges, a novel two-phase network alignment framework UMA (Unsupervised Multi-network Alignment) is proposed in this paper. Extensive experiments conducted on multiple real-world partially aligned social networks demonstrate that UMA can perform very well in solving the M-NASA problem.

This paper is an extended version of PNA: Partial Network Alignment with Generic Stable Matching accepted by IEEE IRI 2015 [32].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://stackoverflow.com.

  2. 2.

    http://superuser.com.

  3. 3.

    http://programmers.stackexchange.com.

  4. 4.

    http://www.quora.com.

  5. 5.

    http://stackexchange.com/users/11683/jon-skeet?tab=accounts.

References

  1. Avriel, M.: Nonlinear Programming: Analysis and Methods. Prentice-Hall, Englewood Cliffs (1976)

    Google Scholar 

  2. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In: WWW (2007)

    Google Scholar 

  3. Bayati, M., Gerritsen, M., Gleich, D., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: ICDM (2009)

    Google Scholar 

  4. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. TKDD (2007)

    Google Scholar 

  5. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI (2004)

    Google Scholar 

  6. Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Prentice Hall Series in Automatic Computation. Prentice-Hall Inc. (1974)

    Google Scholar 

  7. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: a machine learning approach. In: Handbook on Ontologies (2004)

    Google Scholar 

  8. Dubins, L., Freedman, D.: Machiavelli and the gale-shapley algorithm. Am. Math. Mon. (1981)

    Google Scholar 

  9. Flannick, J., Novak, A., Srinivasan, B., McAdams, H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. (2006)

    Google Scholar 

  10. Jin, S., Zhang, J., Yu, P., Yang, S., Li, A.: Synergistic partitioning in multiple large scale social networks. In: IEEE BigData (2014)

    Google Scholar 

  11. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein networks. In: RECOMB (2008)

    Google Scholar 

  12. Khan, A., Gleich, D., Pothen, A., Halappanavar, M.: A multithreaded algorithm for network alignment via approximate matching. In: SC (2012)

    Google Scholar 

  13. Kong, X., Zhang, J., Yu, P.: Inferring anchor links across multiple heterogeneous social networks. In: CIKM (2013)

    Google Scholar 

  14. Koutra, D., Tong, H., Lubensky, D.: Big-align: fast bipartite graph alignment. In: ICDM (2013)

    Google Scholar 

  15. Kunen, K.: Set Theory. Elsevier Science Publishers (1980)

    Google Scholar 

  16. Lee, J., Han, W., Kasperovics, R., Lee, J.: An in-depth comparison of subgraph isomorphism algorithms in graph databases. VLDB (2012)

    Google Scholar 

  17. Liao, C., Lu, K., Baym, M., Singh, R., Berger, B.: Isorankn: spectral methods for global alignment of multiple protein networks. Bioinformatics (2009)

    Google Scholar 

  18. Manne, F., Halappanavar, M.: New effective multithreaded matching algorithms. In: IPDP (2014)

    Google Scholar 

  19. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: ICDE (2002)

    Google Scholar 

  20. Park, D., Singh, R., Baym, M., Liao, C., Berger, B.: Isobase: a database of functionally related proteins across ppi networks. Nucleic Acids Res. (2011)

    Google Scholar 

  21. Sharan, R., Suthram, S., Kelley, R., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R., Ideker, T.: Conserved patterns of protein interaction in multiple species (2005)

    Google Scholar 

  22. Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.: A survey of heterogeneous information network analysis. CoRR (2015). arXiv:1511.04854

  23. Shih, Y., Parthasarathy, S.: Scalable global alignment for multiple biological networks. Bioinformatics (2012)

    Google Scholar 

  24. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: RECOMB (2007)

    Google Scholar 

  25. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. In: Proceedings of the National Academy of Sciences (2008)

    Google Scholar 

  26. Smalter, A., Huan, J., Lushington, G.: Gpm: a graph pattern matching kernel with diffusion for chemical compound classification. In: IEEE BIBE (2008)

    Google Scholar 

  27. Tsikerdekis, M., Zeadally, S.: Multiple account identity deception detection in social media using nonverbal behavior. IEEE TIFS (2014)

    Google Scholar 

  28. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE TPAMI (1988)

    Google Scholar 

  29. Wipf, D., Rao, B.: L0-norm minimization for basis selection. In: NIPS (2005)

    Google Scholar 

  30. Zafarani, R., Liu, H.: Connecting users across social media sites: a behavioral-modeling approach. In: KDD (2013)

    Google Scholar 

  31. Zhan, Q., Zhang, J., Wang, S., Yu, P., Xie, J.: Influence maximization across partially aligned heterogenous social networks. In: PAKDD (2015)

    Google Scholar 

  32. Zhang, J., Shao, W., Wang, S., Kong, X., Yu, P.: Partial network alignment with anchor meta path and truncated generalized stable matching. In: IRI (2015)

    Google Scholar 

  33. Zhang, J., Yu, P.: Integrated anchor and social link predictions across social networks. In: IJCAI (2015)

    Google Scholar 

  34. Zhang, J., Yu, P.: Mcd: mutual clustering across multiple heterogeneous networks. In: IEEE BigData Congress (2015)

    Google Scholar 

  35. Zhang, J., Yu, P., Multiple anonymized social networks alignment. In: ICDM (2015)

    Google Scholar 

  36. Zhang, J., Yu, P., Pct: partial co-alignment of social networks. In: WWW (2016)

    Google Scholar 

  37. Zhang, J., Yu, P., Zhou, Z.: Meta-path based multi-network collective link prediction. In: KDD (2014)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by NSF through grants III-1526499, CNS-1115234, and OISE-1129076, Google Research Award, and the Pinnacle Lab at Singapore Management University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Zhang .

Editor information

Editors and Affiliations

Appendix: New Objective Function

Appendix: New Objective Function

Based on the above relaxations used in Sect. 3.3, the new objective function can be represented as

$$\begin{aligned}&\bar{\mathbf {T}}^{(i,j)}, \bar{\mathbf {T}}^{(j,k)}, \bar{\mathbf {T}}^{(k,i)} \\&={\arg \min }_{\mathbf {T}^{(i,j)}, \mathbf {T}^{(j,k)}, \mathbf {T}^{(k,i)}} \left\| (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)} \mathbf {T}^{(i,j)} - \mathbf {S}^{(j)} \right\| ^2_F\\&+ \left\| (\mathbf {T}^{(j,k)})^\top \mathbf {S}^{(j)} \mathbf {T}^{(j,k)} - \mathbf {S}^{(k)} \right\| ^2_F + \left\| (\mathbf {T}^{(k,i)})^\top \mathbf {S}^{(k)} \mathbf {T}^{(k,i)} - \mathbf {S}^{(i)} \right\| ^2_F\\&+ \alpha \cdot \left\| (\mathbf {T}^{(j,k)})^\top (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)} \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)} - \mathbf {T}^{(k,i)} \mathbf {S}^{(i)} (\mathbf {T}^{(k,i)})^\top \right\| ^2_F\\&+ \beta \cdot \left\| \mathbf {T}^{(i,j)} \right\| _0 + \gamma \cdot \left\| \mathbf {T}^{(j,k)} \right\| _0 + \theta \cdot \left\| \mathbf {T}^{(k,i)} \right\| _0\\&s.t.\ \mathbf {0}^{|\mathcal {U}^{(i)}| \times |\mathcal {U}^{(j)}|} \preccurlyeq \mathbf {T}^{(i,j)} \preccurlyeq \mathbf {1}^{|\mathcal {U}^{(i)}| \times |\mathcal {U}^{(j)}|},\\&\ \ \ \ \ \mathbf {0}^{|\mathcal {U}^{(j)}| \times |\mathcal {U}^{(k)}|} \preccurlyeq \mathbf {T}^{(j,k)} \preccurlyeq \mathbf {1}^{|\mathcal {U}^{(j)}| \times |\mathcal {U}^{(k)}|},\\&\ \ \ \ \ \mathbf {0}^{|\mathcal {U}^{(k)}| \times |\mathcal {U}^{(i)}|} \preccurlyeq \mathbf {T}^{(k,i)} \preccurlyeq \mathbf {1}^{|\mathcal {U}^{(k)}| \times |\mathcal {U}^{(i)}|}. \end{aligned}$$

The Lagrangian function of the objective function can be represented as

$$\begin{aligned}&\mathcal {L}(\mathbf {T}^{(i,j)}, \mathbf {T}^{(j,k)}, \mathbf {T}^{(k,i)}, \beta , \gamma , \theta ) = \left\| (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)} \mathbf {T}^{(i,j)} - \mathbf {S}^{(j)} \right\| ^2_F\\&+\left\| (\mathbf {T}^{(j,k)})^\top \mathbf {S}^{(j)} \mathbf {T}^{(j,k)} - \mathbf {S}^{(k)} \right\| ^2_F + \left\| (\mathbf {T}^{(k,i)})^\top \mathbf {S}^{(k)} \mathbf {T}^{(k,i)} - \mathbf {S}^{(i)} \right\| ^2_F\\&+\alpha \cdot \left\| (\mathbf {T}^{(j,k)})^\top (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)} \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)} - \mathbf {T}^{(k,i)} \mathbf {S}^{(i)} (\mathbf {T}^{(k,i)})^\top \right\| ^2_F\\&+ \beta \cdot \left\| \mathbf {T}^{(i,j)} \right\| _0 + \gamma \cdot \left\| \mathbf {T}^{(j,k)} \right\| _0 + \theta \cdot \left\| \mathbf {T}^{(k,i)} \right\| _0. \end{aligned}$$

The partial derivatives of function \(\mathcal {L}\) with regard to \(\mathbf {T}^{(i,j)}\), \(\mathbf {T}^{(j,k)}\), and \(\mathbf {T}^{(k,i)}\) will be:

$$\begin{aligned} (1)&\frac{\partial \mathcal {L}\left( \mathbf {T}^{(i,j)}, \mathbf {T}^{(j,k)}, \mathbf {T}^{(k,i)}, \beta , \gamma , \theta \right) }{\partial \mathbf {T}^{(i,j)}}\\&= 2 \cdot \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}(\mathbf {T}^{(i,j)})^\top (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\\&+ 2 \cdot (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}(\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)}\mathbf {T}^{(i,j)} \\&+ 2 \alpha \cdot \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}(\mathbf {T}^{(j,k)})^\top (\mathbf {T}^{(i,j)})^\top (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}(\mathbf {T}^{(j,k)})^\top \\&+ 2 \alpha \cdot (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}(\mathbf {T}^{(j,k)})^\top (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}(\mathbf {T}^{(j,k)})^\top \\&- 2 \cdot \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}(\mathbf {S}^{(j)})^\top - 2 \cdot (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\mathbf {S}^{(j)}\\&- 2 \alpha \cdot (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}\mathbf {T}^{(k,i)}\mathbf {S}^{(i)}(\mathbf {T}^{(k,i)})^\top (\mathbf {T}^{(j,k)})^\top \\&-2 \alpha \cdot \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}\mathbf {T}^{(k,i)}(\mathbf {S}^{(i)})^\top (\mathbf {T}^{(k,i)})^\top (\mathbf {T}^{(j,k)})^\top - \beta \cdot \mathbf {1}\mathbf {1}^\top .\\ (2)&\frac{\partial \mathcal {L}\left( \mathbf {T}^{(i,j)}, \mathbf {T}^{(j,k)}, \mathbf {T}^{(k,i)}, \beta , \gamma , \theta \right) }{\partial \mathbf {T}^{(j,k)}}\\&= 2 \cdot \mathbf {S}^{(j)}\mathbf {T}^{(j,k)}(\mathbf {T}^{(j,k)})^\top (\mathbf {S}^{(j)})^\top \mathbf {T}^{(j,k)}\\&+ 2 \cdot (\mathbf {S}^{(j)})^\top \mathbf {T}^{(j,k)}(\mathbf {T}^{(j,k)})^\top \mathbf {S}^{(j)}\mathbf {T}^{(j,k)} \\&+ 2 \alpha \cdot (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}(\mathbf {T}^{(j,k)})^\top (\mathbf {T}^{(i,j)})^\top (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}\\&+ 2 \alpha \cdot (\mathbf {T}^{(i,j)})^\top (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}(\mathbf {T}^{(j,k)})^\top (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}\\&- 2 \cdot \mathbf {S}^{(j)}\mathbf {T}^{(j,k)}(\mathbf {S}^{(k)})^\top - 2 \cdot (\mathbf {S}^{(j)})^\top \mathbf {T}^{(j,k)}\mathbf {S}^{(k)}\\&- 2 \alpha \cdot (\mathbf {T}^{(i,j)})^\top (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}\mathbf {T}^{(k,i)}\mathbf {S}^{(i)}(\mathbf {T}^{(k,i)})^\top \\&-2 \alpha \cdot (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}\mathbf {T}^{(k,i)}(\mathbf {S}^{(i)})^\top (\mathbf {T}^{(k,i)})^\top - \gamma \cdot \mathbf {1}\mathbf {1}^\top .\\ (3)&\frac{\partial \mathcal {L}\left( \mathbf {T}^{(i,j)}, \mathbf {T}^{(j,k)}, \mathbf {T}^{(k,i)}, \beta , \gamma , \theta \right) }{\partial \mathbf {T}^{(k,i)}}\\&= 2 \cdot \mathbf {S}^{(k)}\mathbf {T}^{(k,i)}(\mathbf {T}^{(k,i)})^\top (\mathbf {S}^{(k)})^\top \mathbf {T}^{(k,i)} \\&+ 2 \cdot (\mathbf {S}^{(k)})^\top \mathbf {T}^{(k,i)}(\mathbf {T}^{(k,i)})^\top \mathbf {S}^{(k)}\mathbf {T}^{(k,i)} \\&+ 2 \alpha \mathbf {T}^{(k,i)}(\mathbf {S}^{(i)})^\top (\mathbf {T}^{(k,i)})^\top \mathbf {T}^{(k,i)}\mathbf {S}^{(i)} \\&+ 2 \alpha \mathbf {T}^{(k,i)}\mathbf {S}^{(i)}(\mathbf {T}^{(k,i)})^\top \mathbf {T}^{(k,i)}(\mathbf {S}^{(i)})^\top \\&- 2 \cdot \mathbf {S}^{(k)}\mathbf {T}^{(k,i)}(\mathbf {S}^{(i)})^\top - 2 \cdot (\mathbf {S}^{(k)})^\top \mathbf {T}^{(k,i)}\mathbf {S}^{(i)}\\&- 2 \alpha \cdot (\mathbf {T}^{(j,k)})^\top (\mathbf {T}^{(i,j)})^\top (\mathbf {S}^{(i)})^\top \mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}\mathbf {T}^{(k,i)}\mathbf {S}^{(i)}\\&- 2 \alpha \cdot (\mathbf {T}^{(j,k)})^\top (\mathbf {T}^{(i,j)})^\top \mathbf {S}^{(i)}\mathbf {T}^{(i,j)}\mathbf {T}^{(j,k)}\mathbf {T}^{(k,i)}(\mathbf {S}^{(i)})^\top - \theta \cdot \mathbf {1}\mathbf {1}^\top . \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, J., Zhan, Q., Yu, P.S. (2016). Concurrent Alignment of Multiple Anonymized Social Networks with Generic Stable Matching. In: Bouabana-Tebibel, T., Rubin, S. (eds) Theoretical Information Reuse and Integration. Advances in Intelligent Systems and Computing, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-319-31311-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31311-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31309-2

  • Online ISBN: 978-3-319-31311-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics