Predicting Triage Waiting Time in Maternity Emergency Care by Means of Data Mining

  • Sónia Pereira
  • Luís Torres
  • Filipe PortelaEmail author
  • Manuel F. Santos
  • José Machado
  • António Abelha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 445)


Healthcare organizations often benefit from information technologies as well as embedded decision support systems, which improve the quality of services and help preventing complications and adverse events. In Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto (CHP), an intelligent pre-triage system is implemented, aiming to prioritize patients in need of gynaecology and obstetrics care in two classes: urgent and consultation. The system is designed to evade emergency problems such as incorrect triage outcomes and extensive triage waiting times. The current study intends to improve the triage system, and therefore, optimize the patient workflow through the emergency room, by predicting the triage waiting time comprised between the patient triage and their medical admission. For this purpose, data mining (DM) techniques are induced in selected information provided by the information technologies implemented in CMIN. The DM models achieved accuracy values of approximately 94 % with a five range target distribution, which not only allow obtaining confident prediction models, but also identify the variables that stand as direct inducers to the triage waiting times.


Data mining Real data Obstetrics care Maternity care Gynaecology and obstetrics care Emergency room Triage systems Triage waiting time Interoperability Intelligence decision support system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kawamoto, K., Houlihan, C., Balas, E., Lobach, D.: Impriving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. In: BMJ, 1-8 (2005)Google Scholar
  2. 2.
    Haynes, R., Wilczynski, N.: Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: Methods of a decision-maker-researcher partnership systematic review. In: Implementation Science 5 (12), 1-8 (2010)Google Scholar
  3. 3.
    Kaushal, A., Zhao, Y., Peng, Q., Strome, T., Weldon, E., Zhang, M., Chochinov, A.: Evaluation of fast track strategies using agent-based simulation modeling to reduce waiting time in a hospital emergency department. In: Socio-Economic Planning Sciences 50, 18-31 (2015)Google Scholar
  4. 4.
    Bergs, J., Verelst, S., Gillet, J.-B., Deboutte, P., Vandoren, C., Vandijck, D.: The number of patients simultaneously present at the emergency department as an indicator of unsafe waiting times: A receiver operated curve-based evaluation. In: Int Emerg. Nursing (2014)Google Scholar
  5. 5.
    Abelha, A., Pereira, E., Brandão, A., Portela, F., Santos, M., Machado, J., Braga, J.: Improving Quality of Services in Maternity Care Triage System. In: International Journal of E-Health and Medical Communications 6 (2), 10-26 (2015)Google Scholar
  6. 6.
    Cabral, A., Pina, C., Machado, H., Abelha, A., Salazar, M., Quintas, C., Portela, F., Machado, J., Neves, J., Santos, M.: Data Acquisition Process for an Intelligent Decision Support in Gynecology and Obstetrics Emergency Triage. In: CENTERIS, 223-232 (2011)Google Scholar
  7. 7.
    Pereira, E., Brandão, A., Salazar, M., Portela, F., Santos, M., Machado, J., Abelha, A., Braga, J.: Pre-Triage Decision Support Improvement in Maternity Care by means of Data Mining. In: Integration of Data Mining in Business Intelligence Systems, 175-192 (2014)Google Scholar
  8. 8.
    Abelha, A., Machado, J., Santos, M., Allegro, S., Rua, F., Paiva, M., Neves, J.: Agency for Integration, Diffusion and Archive of Medical Information. In: IASTED (2002)Google Scholar
  9. 9.
    Abelha, A., Analide, C., Machado, J., Neves, J., Santos, M., and Novais, P.: Ambient intelligence and simulation in health care virtual scenarios. In: Establishing the Foundation of Collaborative Networks, 461-468 (2007)Google Scholar
  10. 10.
    Peixoto, H., Santos, M., Abelha, A., Machado, J.: Intelligence in Interoperability with AIDA. In: 20th International Symposium on Methodologies for Intelligent Systems (2012)Google Scholar
  11. 11.
    Cardoso, L., Marins, F., Portela, F., Santos, M., Abelha, A., Machado, J.: The Next Generation of Interoperability Agents in Healthcare. In: Int. J. Environ. Res. Public Health 11, 5349-5371 (2014)Google Scholar
  12. 12.
    Portela, F., Cabral, A., Abelha, A., Salazar, M., Quintas, C., Machado, J., Santos, M.: Knowledge Acquisition Process for Intelligent Decision Support in Critical Health Care. In: Healthcare Administration: Concepts, Methodologies, Tools, and Applications, (2014)Google Scholar
  13. 13.
    Frawley, W., Piatetsky-Shapiro, G., Matheus, C.: Knowledge discovery in databases: An overview. In: AI magazine 13(3), 57 (1992)Google Scholar
  14. 14.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. In: AI magazine 17 (3), 37 (1996)Google Scholar
  15. 15.
    Maimon, O., Rokach, L.: Introduction to Knowledge Discovery and Data Mining. In: Data Mining and Knowledge Discovery Handbook, 1-17 (2005)Google Scholar
  16. 16.
    Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J.-F., Hua, L.: Data Mining in Healthcare and Biomedicine: A Survey of the Literature. In: J Med Syst 36, 2431–2448 (2012)Google Scholar
  17. 17.
    Obenshain, M.: Application of data mining techniques to healthcare data. In: Infection Control 25(08), 690-695 (2004)Google Scholar
  18. 18.
    Braga, P., Portela, F., Santos, M., Rua, F.: Data mining models to predict patient’s readmission in intensive care units. In : ICAART 2014 - 6th International Conference on Agents and Artificial Intelligence. pp 270-276. SciTePress. (2014)Google Scholar
  19. 19.
    Portela, F., Santos, M., Machado, J., Abelha, A., Silva, Á.: Pervasive and Intelligent Decision Support in Critical Health Care Using Ensembles. In: LNCS. Information Technology in Bio-and Medical Informatics Springer Berlin Heidelberg, 1-16 (2013)Google Scholar
  20. 20.
    Veloso, R., Portela, F., Santos, M., Sila, Á., Rua, F., Abelha, A., Machado, J.: A Clustering Approach for Predicting Readmissions in Intensive Medicine. In: Procedia Technology 16, 1307-1316 (2014)Google Scholar
  21. 21.
    Pereira, S., Portela, F., Santos, M., Machado, J., Abelha, A.: Predicting Type of Delivery by Identification of Obstetric Risk Factors through Data Mining. Procedia Computer Science. In: HCIST 2015 - Healthy and Secure People (2015)Google Scholar
  22. 22.
    Brandão, A., Pereira, E., Portela, F., Santos, M., Abelha, A., Machado, J.: Managing Voluntary Interruption of Pregnancy using Data Mining. In: Procedia Technology 16, 1297–1306 (2014)Google Scholar
  23. 23.
    Shafique, U., Qaiser, H.: A Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA). In: Int. Journal of Innovation and Scientific Research (2014)Google Scholar
  24. 24.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-DM 1.0 Step-by-step data mining guide (2000)Google Scholar
  25. 25.
    Pereira, E., Brandão, A., Portela, F., Santos, M., Machado, J., Abelha, A.: Business Intelligence in Maternity Care. In: IDEAS (2014)Google Scholar
  26. 26.
    Shaikh, S., Witting, M., Winters, M., Brodeur, M., Jerrad, D.: Support for a waiting room time tracker: a survey of patients waiting in an urban. In: ED. Journal of Emergency Medicine (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sónia Pereira
    • 1
  • Luís Torres
    • 1
  • Filipe Portela
    • 1
    • 2
    Email author
  • Manuel F. Santos
    • 1
  • José Machado
    • 1
  • António Abelha
    • 1
  1. 1.Algoritmi CentreUniversity of MinhobragaPortugal
  2. 2.ESEIGPorto PolytechnicPortoPortugal

Personalised recommendations