Advertisement

Pervasive Patient Timeline for Intensive Care Units

  • André Braga
  • Filipe PortelaEmail author
  • Manuel F. Santos
  • José Machado
  • António Abelha
  • Álvaro Silva
  • Fernando Rua
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 445)

Abstract

This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.

Keywords

Pervasive patient timeline Intensive medicine Intensive care unit Intcare Patient-centred Timeline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saúde, D. G.: Cuidados Intensivos: Recomendações para o seu desenvolvimento. In: Saúde, D.G.d. (ed.), Lisboa (2003)Google Scholar
  2. 2.
    Haux, R., Ammenwerth, E., Winter, A., Brigl, B.: Strategic information management in hospitals: an introduction to hospital information systems. Springer (2004)Google Scholar
  3. 3.
    Morris, A., Gardner, A.: Computer Applications. In: Hall, J., Schmidt, G., Wood, L. (eds.) Principles of Critical Care, pp. 500-514. McGraw-Hill, New York (1992)Google Scholar
  4. 4.
    Silva, Á.J.B.M.d.: Modelos de intelegência artificial na análise da monitorização de eventos clínicos adversos, disfusão/falência de orgãos e prognóstico do doente crítico (2007)Google Scholar
  5. 5.
    Suter, P., Armaganidis, A., Beaufils, F., Bonfill, X., Burchardi, H., Cook, D., Fagot-Largeault, A., Thijs, L., Vesconi, S., Williams, A., Le Gall, J.R., Chang, R.: Predicting outcome in ICU patients. In: Intensive Care Medicine 20, 390-397 (1994)Google Scholar
  6. 6.
    Portela, F., Santos, M., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and Intelligent Decision Support in Intensive Medicine – The Complete Picture. In: Information Technology in Bio- and Medical Informatics, vol. 8649, pp. 87-102. Springer International Publishing (2014)Google Scholar
  7. 7.
    Ramon, J., Fierens, D., Güiza, F., Meyfroidt, G., Blockeel, H., Bruynooghe, M., Van Den Berghe, G.: Mining data from intensive care patients. In: Advanced Engineering Informatics 21, 243-256 (2007)Google Scholar
  8. 8.
    Santos, M.F., Portela, F., Vilas-Boas, M.: Intcare: multi-agent approach for real-time intelligent decision support in intensive medicine. In: ICAART 2011 - International Conference on Agents and Artificial Intelligence. pp 364-369. SciTePress (2011)Google Scholar
  9. 9.
    Santos, M.F., Portela, F., Vilas-Boas, M., Silva, Á., Rua, F.: Hourly prediction of organ failure and outcome in intensive care based on data mining techniques. In: ICEIS 2010 - International Conference on Enterprise Information Systems. pp 270-277. SciTePress (2010)Google Scholar
  10. 10.
    Veloso, R., Portela, F., Santos, M., Machado, J.M., Abelha, A., Silva, Á., Rua, F.: Real-time data mining models for predicting length of stay in intensive care units. In: KMIS 2014-International Conference on Knowledge Management and Information Sharing (2014)Google Scholar
  11. 11.
    Braga, P., Portela, F., Santos, M.F., Rua, F.: Data Mining Models to Predict Patient’s Readmission in Intensive Care Units. In: 6th International Conference on Agents and Artificial Intelligence. pp 270-276. SciTePress (2014)Google Scholar
  12. 12.
    Rosenberg, D., Grafton, A.: Cartographies of time: A history of the timeline. In: Princeton Architectural Press (2010)Google Scholar
  13. 13.
    McDonald, C., Gardner, R.: Computerized Management of Intensive Care Patients. In: Images, Signals and Devices, pp. 31-45. Springer New York (1987)Google Scholar
  14. 14.
  15. 15.
    Cook, D.J., Das, S.K.: How smart are our environments? An updated look at the state of the art. In: Pervasive and mobile computing 3, 53--73 (2007)Google Scholar
  16. 16.
    Cook, D.J., Das, S.K.: Pervasive computing at scale: Transforming the state of the art. In: Pervasive and Mobile Computing 8, 22--35 (2012)Google Scholar
  17. 17.
    Portela, F., Santos, M., V.-B.M.: A pervasive approach to a real-time intelligent decision support system in intensive medicine. In: CCIS - Communications in Computer and Information Science. Volume 272, 2013, pp 368-381. Springer (2013)Google Scholar
  18. 18.
    Portela, F., Santos, M., V.-B.M.: A pervasive approach to a real-time intelligent decision support system in intensive medicine. In: CCIS - Communications in Computer and Information Science. Volume 272, 2013, pp 368-381. Springer (2013)Google Scholar
  19. 19.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. In: Journal of management information systems 24, 45-77 (2007)Google Scholar
  20. 20.
    Braga, A., Portela, F., Santos, M. F., Machado, J., Abelha, A., Silva, A., Rua F.: Data Mining to predict the use of Vasopressors in Intensive Medicine Patients. In: Jurnal Teknologi (2016) (accepted for publication)Google Scholar
  21. 21.
    Portela, F., Santos, M. F., Machado, J., Abelha, A., Silva, A., Rua F.. Real-time Decision Support using Data Mining to predict Blood Pressure Critical Events in Intensive Medicine Patients. In: LNCS - Ambient Intelligence for Health. Volume 9456, 2015, pp 77-90. Springer (2015)Google Scholar
  22. 22.
    Portela, F., Santos, M. F., Machado, J., Abelha, A., Silva, A., Rua F.. Preventing Patient Cardiac Arrhythmias by Using Data Mining Techniques. In: IECBES 2014 - IEEE. (2015).Google Scholar
  23. 23.
    Portela, F., Veloso, R., Oliveira, S. , Santos, M. F., Machado, J., Abelha, A., Silva, A., Rua F.. Predict hourly patient discharge probability in Intensive Care Units using Data Mining. Indian Journal of Science and Technology. In: Indian Society for Educat (2016) (accepted for publication)Google Scholar
  24. 24.
    Gonçalves, J., Portela, F., Santos, M. F., Machado, J., Abelha, A., Silva, A., Rua F. Real-time Predictive Analytics for Sepsis Level and Therapeutic Plans in Intensive Care Medicine. In: IJHISI. Volume 9, Issue 3, pp 36-54. IGI Global (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • André Braga
    • 1
  • Filipe Portela
    • 1
    • 2
    Email author
  • Manuel F. Santos
    • 1
  • José Machado
    • 1
  • António Abelha
    • 1
  • Álvaro Silva
    • 3
  • Fernando Rua
    • 3
  1. 1.Algoritmi Research CentreUniversity of MinhoXXPortugal
  2. 2.ESEIGPorto PolytechnicPortoPortugal
  3. 3.Intensive Care UnitCentro Hospitalar Do PortoPortoPortugal

Personalised recommendations